$30 off During Our Annual Pro Sale. View Details »

GLOBIS データサイエンスチームのご紹介/ GLOBIS Data Science Team is hiring.

GLOBIS データサイエンスチームのご紹介/ GLOBIS Data Science Team is hiring.

GLOBIS Digital Platform部門のデータサイエンスチームの紹介です。
社会人に最適な学習機会を 届けていくために、 質の高いデータ活用を通して、 意思決定・プロダクトの クオリティを向上させることをチームミッションに日々、努力しています!一緒にこのミッションに向かってくれる仲間を大募集中です!

GLOBIS Digital Platform

March 28, 2022
Tweet

More Decks by GLOBIS Digital Platform

Other Decks in Technology

Transcript

  1. 株式会社グロービス 2022年10月17日 エンジニア向け データサイエンスチームのご紹介

  2. 1 デジタルプラットフォーム部門の紹介 2 データサイエンスチームの紹介 3 組織文化・働き方 4 選考フロー

  3. 2 GLOBIS Vision 会社概要 「創造に挑み、変革を導く」 グロービスは、経営に関する 「ヒト」・「カネ」・「チエ」の生態系を創り 社会の創造と変革を行う会社です 2022年で30周年を迎えました

  4. 3 グロービスの組織体制 デジタルプラットフォーム部門の紹介 Vision 日本発、世界をリードする Ed-Tech カンパニーになる To become a

    leading global Ed-tech company, born in Japan. Mission 学びの未来を作りだし、 人の可能性を広げていく To expand people’s horizons by creating the future of education. 株式会社グロービス 学校法人グロービス経営大学院 法人事業部門 ファカルティ・グループ・オフィス デジタルプラットフォーム部門 代表室 経営管理本部 株式会社茨城ロボッツ・ スポーツエンターテインメント 株式会社グロービス・キャピタル・ パートナーズ 一般財団法人KIBOW 一般社団法人G1
  5. 4 サービス紹介 2016年の発足より育成ノウハウやコンテンツのデジタルサービス化を推進し、 グロービス事業の中核を担うまで成長しています デジタルプラットフォーム部門の紹介 個 人 法 人 個

    人 法 人 論理的思考力、戦略・マーケティング、会計・財務、組織・リーダーシップなど、 ビジネスパーソンに必須の知識を、スマホやPCを通じて動画で学ぶことが可能 安価で良質なオンラインサービスで幅広い顧客に展開、累計20万人以上が利用 「GLOBIS 学び放題」の英語版、全世界照準でグローバル展開 ビジネススクールで使われている活きた英語で、ビジネスナレッジをマイクロラーニ ング形式で提供 法 人 企業に 属する全ての人 材の学びを 支援するS aaS 型L MS グロービスのコンテンツや 研修を提供するツールで 培ってきた知 見をプロダク ト化 2021年 5月リリース 個 人 インプッ トした知識が アウ トプッ トに つながる 感覚を 掴めるライ トなプログラ ム ライ ブ授業・動画 授業・ 記述式学 習・ 振り 返り・グループ ワークなどの学 習方法を 組 み合わ せた6 週間の カリ キュラ ム
  6. 5 プロダクト経済圏 デジタルプラットフォーム部門は、GLOBISのコアコンピタンスをベースに社会人や企業の学びを支援する活動を世界に拡げ、 データ還流による持続可能な社会の実現に取り組んでいます デジタルプラットフォーム部門の紹介 Company Global Data Unlimited 学び放題

    ナノ単科 MBA GAiMERi eMBA2.0 GMAP データ分析 Faculty Core competence GLMS GLOPLA WorkingAdult Japan Company Customer System Application Business 提供 約6,000社 190万人 会員数 21万ID以上 キャンパス 国内7 海外4 卒業生 7,503名 年間 1,158名入学 国内シェア 1/3以上
  7. 6 開発環境 サービス特性に合ったモダンな技術を選択し、 開発チームの状況やサービスの成長フェーズに応じてアップデートしています デジタルプラットフォーム部門の紹介 Docker Auth0 Next.js AWS k8s

    GCP Python Flutter Ruby GraphQL React TypeScript Autify Swift Kotlin Circle CI APOLLO Codecov ESLint Prettier RSpec RuboCop Slack Notion Miro Figma Data studio zoom oVice Amplitude Tableau Mackerel Datadog stripe Gather Jest SENTRY NGINX ツ ー ル 開 発
  8. 7 職種・年齢・国籍構成 デジタルプラットフォーム部門の紹介 エンジニア 38.3% コンテンツ開発 11% カスタマーサクセス 8% 事業開発

    8% その他(マーケティング・HR) 15% デザイナー 5.7% PO(PM) 5.1% データ人材 4.6% エンジニアリング マネージャー 3.4% スクラムマスター 1.1% プロダクト開発に関わるテクノロジー職は 部門全体のおよそ60%を占め、 正社員と外部パートナーの割合が2対1の組織 職 種 構 成 部門合計 212名 平均年齢 34.4歳 20代 19.2% 40代〜 15.4% 30代前半 34.6% 30代後半 30.8% 新卒採用を していないため20 代が 少なく、 複数の 現場を 経てjoinしている 中堅メンバー が 多くダ イバー シテ ィに 富んだ組織 年 齢 構 成 Japanese 190 名 International 22 名 外国 比率 10.4% アメリカ、イギリス、中国、台湾、フィリピン、ブラジ ル、 南アフリカ共和国、シリア、インド、リト アニア Visionの 実現に 向けて11 カ国の メンバー で構成される インターナ ショナ ルな組織 国 籍 構 成 ※ 2022 年9月時点
  9. 8 メンバーの主な経歴 新卒採用を行っておらず、中途採用のみで「異質の効用」を追求しているため、 多彩なバックグラウンドのメンバーが活躍しています デジタルプラットフォーム部門の紹介 スタートアップ CAMPFIRE、メルカリ、Speee、デジタルガレージ、ラクスル、うるる、SKIYAKI、 リブセンス、ウィルド、ウィルゲート、マイクロウェーブ、Vitalize、 爆発研究所、東日本技術研究所、ポケラボ、ジラフ、スタートアップラボ、Bridge、 FiNC、DogHuggy、LiveArts、LIG、Viibar、プロテック、アクアリング、ユニファ、

    Co-LABO MAKER、ARROWS、アトラエ、bitFlyer 大手IT TIS、リクルートテクノロジーズ、電通デジタル、デロイトトーマツサイバー、 インテック、住友セメントシステム開発、大都、ワークスアプリケーションズ、 アリエルネットワーク・KLab、ベリサーブ、EXGEN、ソフトバンク、ヤフー、 デジタル・インフォメーション・テクノロジー、ハイテクシステム、サイバーエージェント、 DeNA、GREE、ドワンゴ、楽天、ドリコム、セガ、JCOM、ニコンシステム 非IT 凸版印刷、東芝、日本年金機構、市役所、星乃珈琲店 エンジ ニア CTO、サーバサイドエンジニア、インフラエンジニア、フロントエンジニア、 iOSエンジニア、A ndroidエンジニア、テストエンジニア、 QAエンジニア、 データサイエンティスト、データア ナリスト、プロ ダクト オー ナー、 プロ ダクトマネージ ャー、プロジェクトマネージ ャー 、 デ ザイナー UIデ ザイ ナー、 UXデ ザイ ナー、 UXリサー チャー、グラフィックデ ザイ ナー、 プロ ダクトデ ザイ ナー、 モバイルデ ザイ ナー、Webデ ザイ ナー、Webディレクター、 アートディレクター、デ ザインマネージ ャー、 紙媒体デ ザイ ナー 非 エンジ ニア CEO、CPO、 広報、 経理、 営業、 人事、研究 員、 社長秘書、マーケティング、 リサー チャー、SE、CS、コンサルティング、 ビジネスア ナリスト、ライター、 プラン ナー、 雑誌編集者、電 気技 師、ライン 工、CATV技術 者、 介護士、 倉庫出荷係、 レストランの キッ チン、ア パレル 店員、 ギター 職人 職種 企業
  10. 1 デジタルプラットフォーム部門の紹介 2 データサイエンスチームの紹介 3 組織文化・働き方 4 選考フロー

  11. 10 向き合う課題と提供価値 データサイエンスチームの紹介 複数のデジタルサービスが、 スピード感を持って立ち上がる 背 景 課 題 価

    値 日々発生する大量のデータを 有効活用できる状態ではなかった データ基盤の整備により、 データ活用ができる状態へ 大量のデータを活用した、 ユーザーへの価値提供  サービス運営における意思決定が 難しく、主観に頼る傾向にあった テクノロジーの力を活用して、 新しい学習価値の提供に挑戦 している データを利用した サービス品質向上 データ専門を活かした、 意思決定支援
  12. 11 チームのミッション(存在意義) 社会人に最適な学習機会を 届けていくために、 質の高いデータ活用を通して、 意思決定・プロダクトの クオリティを向上させる。 Team Mission 最適な学習機会を届ける

    必要な人に、必要なタイミングで、 必要な学習手段を提供し、 学び手が成長実感を持ち、自らの 可能性を広げられる状態にすること 思い込みや見落としを排除し、 多面的・長期的・根源的な視点での 判断ができるように、 ステークホルダーの支援をしていくこと 人力だけでは実現できないような 大きな価値をユーザーに提供 すること データを扱う全ての人が 安心してデータを活用できる状態を 整えること 質の高いデータ活用 意思決定の クオリティを向上させる プロダクトの クオリティを向上させる データサイエンスチームの紹介
  13. 12 中長期で取り組む重点方針 データサイエンスチームの紹介 方 針 方 針 の 分 解

    具 体 例 ・レコメンド精度向上、検索エンジン精度向上など ・その他、情報訴求の最適化(ex:ユーザーコメントなど) ・テスト理論を深掘りした、最適な能力測定など ・人材要件 - スキル - 教材の辞書定義、レコメンドモジュール開発 ・音声データのテキスト化、スキルタグ付けの仕組み開発など データ専門性を活かした、 プロダクト進化への貢献 質の高いデータ活用の 土台づくり データ基盤、データ可視化の土台作りと進化 ・事業方針に沿ったデータ基盤のアップデート ・重点指標の可視化支援 ・共通名寄せID(≒統合ID)の元でのデータ統合準備 ・その他、競争力向上に向けて必要なデータ定義の議論 ・データ人材の 採用 ・データ人材 が能力を発 揮し、キ ャリアを 伸ばすことがで きる   組 織作り データ 人材の 採用、活 躍で きる組 織作り データを活用した 新規価値の 創出 ・ 施策立案時、 施策実行時、 効果検 証時への支援 ・ 見えて いな い重要事 実の発 見と示唆だし ・ 動画学習、 ナノ単科、 クラス 学習への Hop Ste p Jump支援 ・ GLOPLA、グ ロ放題/Unlimite d、他 学習教材を統合した 学習   体験の 提供支 援 データ専門性を活かした、 施策精度向上の 支援 サー ビス /プロダクトを 横断した、 学習個別最適化の 実現 意思決定の質 向上の 支援 プロダクト 価値の 向上 1 2 3
  14. 13 チームの体制 データサイエンスチームの紹介 チームリーダー アドバイザー データエンジニアリング Unit プロダクト価値の向上 └ 機械学習エンジニア

    2名
   ※ 1名はデータエンジニアと兼務 質の高いデータ活用の土台づくり └ データエンジニア 2名 意思決定の質向上の支援 └ データサイエンティスト 3名 データサイエンス Unit 1 2 3
  15. 14 チームリーダー・アドバイザー データサイエンスチームの紹介 株式会社富士通金融システムズ(現 富士通株式会社)でデータベースエンジニア としてのキャリアを積み、その後データ・フォアビジョン株式会社にてデータベー スソリューションや金融工学系ソフトウェアの開発、データサイエンス、人事等の 役員を担当。2018年よりフリーランスとして独立し、AIコンサルタント、機械学 習エンジニア、データサイエンティスト、データアーキテクトとして活動。2019 年、データアナリティクスラボ㈱を共同経営者として起業し、データサイエンティ

    ストを未経験者から実践経験者へと育成する事業に従事。 森谷 和弘 技術顧問 この国を元気にし、明るい未来を創り上げるにあたって教育領域は重要な社会基盤 であり、その領域を高度化していくためにはデジタル技術の活用が急務となりま す。一緒に新しい社会人教育のあり方とこの国の未来を作っていきましょう! コメント データ 解析設計事務 所 代表 データアナリティクスラボ株式会社 取締役 CTO データサイエンティスト 協会 スキル 定義委員 Moriya Kazuhiro サイ バーエージェントでインター ネット マー ケティン グの 法人営業として、金融・ 旅行・サービス業の ネット マー ケティン グを 支援。その後、デジタル・ PR会社の ビルコム株式会社の創業に 参画。 取締役 COOとして経営 全般に 約10年 間携わる。 グロービス 参画後、 グロービス学 び放題を立 ち上げ、現 在は同事業の事業リー ダー 及びデジタル・ プラ ットフォーム 部門の マネジン グ・ディ レクターを務める。 鳥潟 幸志 Managing Director 社会人教育という領域に おいて、データを活用した 取り 組みの 可能性は 無限だと 感 じています。 ぜひ、一緒に教育領域でのイ ノベーションを起こしていきましょう! コメント グロービス学 び放題 事業リー ダー データサイエンス チーム リー ダー Tori g a t a Ko j i
  16. 15 チーム行動方針 データサイエンスチームでは、以下の4つを行動指針として日々の仕事に取り組んでいます。 データサイエンスチームの紹介 コミュニケーションを大切に、 相互支援をしていこう 他チームと協調し、 愛される存在になろう <避けたい状態> 対話の軽視、困っているチームの仲間を助けない

    <避けたい状態> 他チームからの孤立、他チームとの非生産的な対立、 他チーム・DSチームとの役割が曖昧な状態 おざなりな仕事ではなく、 ていねいな仕事をしよう <避けたい状態> その場しのぎの短期視点の仕事、ミッションに合致しない仕事 仕事を楽しみ、成長を楽しもう <避けたい状態> 堅苦しい 雰囲気、短期 成果”の み”注力、 ワクワクしない /成長につながらない仕事が 半分以 上
  17. 16 データサイエンス Unit の紹介 データサイエンスチームの紹介 チームリーダー アドバイザー データエンジニアリング Unit プロダクト価値の向上

    └ 機械学習エンジニア 2名
   ※ 1名はデータエンジニアと兼務 質の高いデータ活用の土台づくり └ データエンジニア 2名 意思決定の質向上の支援 └ データサイエンティスト 3名 データサイエンス Unit
  18. 17 データサイエンス Unit の取り組み データサイエンスチームの紹介 KPI マネジメント 施策の効果検証 仮説検証 施策企画

    実行支援 契約継続率などの事業KPIを、データを活用 した最適な進め方でグロースさせるための 取り組み 個別施策の企画・実行を支援するための分析例 KPI目標値設定 目標値の実現性をデータから検証し、 適切な水準の目標値を設定 契約継続などの要因となる行動を分析し、 適切に解釈した上で、態度変容に向けた 施策方向性を提案 プロダクト外で期待される態度変容も KPI設定し、アンケート調査で計測 コン テン ツの カー ドソー ティング 結果 データに 階層型ク ラスタ リングを適 用 し、 コン テン ツの適切な カテゴリ分け を支援 カー ドソー ティン グ 結果の 多変 量解析 自由記述データの 自然言語処理 KPIの因 子特定 新KPI設定 A/Bテスト や統計 的因 果推論を 用いて、施策 効果 を 可能な 限り 正確に 推定 加えて、な ぜ施策に 効果があるのか (な いのか ) も検証 統計 的因 果推論 施策の 仮説検証 学習目 的の 自由記述データにト ピック モデ ルを適 用し てユー ザーを分 類し、 セグ メント ごとに 親和性の 高いコン テ ン ツを レコメン ド 処置群と 対照群を ランダ ムに分 割で きず、 バイアス がある 場合に、IP W推定など を 用いてバイアスを 是正 ユー ザーの施策 への リアク ションを検証 し、施策 効果があった (なか った )要因 を 追求
  19. 18 データサイエンス Unit の取り組み データサイエンスチームの紹介 集客 新たな一歩となる行動 (プロダクト外の新アクション) ナノ単科・大学院送客 受講者契約継続

    法人契約継続 コンテンツ企画 技術開発 こ れ ま で の 取 り 組 み 今 後 取 り 組 み た い こ と ・非会員サイトの会員登録貢献コンテンツ分析 ・会員登録導線のファネル分析 ・新施策の因果推論やユーザー行動の仮説検証・仮説探索 ・新施策の因果推論やユーザー行動の仮説検証・仮説探索 ・KPI目標値設定 ・KPIの因子特定やペインポイント探索 ・学習目的の自由記述データの自然言語処理 ・因果推論による施策効果検証 ・KPIの因子特定 ・因果推論による施策効果検証 今後検討 ・アンケート調査設計・分析 ・アンケート調査結果の選択バイアス補正 ・因果推論による施策効果検証 ・ カテ ゴリ分 類の カー ドソーテ ィン グ結果の 多変量解析 ・ 進学ユーザーの学習行動や 志望動 機の特 徴分析 ・コンテンツ 有益度評価の選択バイアス補 正 ・選択バイアス補 正など汎用技術の モジュール 化 ・自由記述データの自然言語処 理による 活用 ・因果推論 モジュール 化 ー
  20. 19 データサイエンス Unit の魅力 データサイエンスチームの紹介 プロダクト開発側との シームレスな関係性 自発的な分析テーマの 企画提案 個別ユーザーのデータを

    長く深く追える データサイエンティストは、プロダクト開発側のメンバー(プロダクトオーナー、エンジニア、デザイナーなど)と、 緊密にコミュニケーションを取りながら、プロダクトのグロースを共に担います プロダクトのグロースのために、何を、どのように分析すべきか、データサイエンティスト自身が分析テーマを自主的 に考えて、プロダクト開発側などに企画提案することが多くあります 教育サー ビスのプロダクトは ユーザーとの 関係が 長期に 渡る分、 ユーザー ごとの 行動ログを 長期的に 計測・蓄積・分析する ことが 可能です 。継続的な 行動ログを 用いて、 短期的な 行動からは 見えにくい ユーザー 特性を 抽出できる 面白さがあります データサイエンティスト も、プロダクト開発側のスク ラムイ ベント やユーザーインタ ビューに 参加するなど、 チー ムの 垣根なく、 一体とな って 仕事を 進めることが できます 積極的に分析アイデアを 出すことは、 チー ムメンバー やプロダクト開発側から 歓迎され、か つ、 求めら れる 環境です また 行動ログ だけでなく、 ユーザーアンケート 調査により、 ユーザーの 心理面に ついて も深く 探ることが できま す
 さらに 行動ログとアンケート 回答結果を 掛け合わせること で、 行動・心理の 両面から ユーザー 像に 迫れます
  21. 20 データサイエンティストの役割 単なる分析作業者ではなく、 データ活用視点から、 プロダクトのグロースを 積極的にリードする役割です プロダクトのグロースにおける課題は何かを問い、 課題解決のためにどのようなデータや分析アプローチが 必要か、分析結果をどう施策に活かすべきかを考え、 様々な関係者と議論し、積極的に提案をしていきます

    データサイエンスチームの紹介 プロダクト オーナー データ サイエンティスト UX デザイナー エンジニア カスタマー サクセス担当 課題を設定した上で、追うべきKPI、課題 解決のためのUXリサーチや分析の進め方、 及び、その結果を踏まえた施策の方向性に ついて検討する 起案 された 具体的な施策について、 施策 内容検 証や 効果検 証設 計を 行う 施策リリース 後は、 効果検 証結果を 共有 し、 ネクストアク ションを検討する 目標とす る 共通の KPIを設定 施策PDCAサイク ルの ための 会議体 課題設定や解決方針を検討する 会議体 施策 起案 プロジ ェクト 体制
  22. 21 データサイエンス Unit のメンバー データサイエンスチームの紹介 一橋大学経済学部卒業。新卒で通信会社に入社し、法人ネットワーク環境の構築やクラウド導入 プロジェクトに携わる。その後データサイエンティストとして転身し、2021年12月より本チーム に参画。 三宅 高暢

    データサイエンティスト ビジネスサイドの最適な意思決定のための施策支援や効果検証をデータを通じて行なっています。 グロービスでの分析業務は新たな気づきと勉強の毎日で、自分のスキルアップを日々実感してい ます。 因果推論のような中々触れることのできない理論に触れたり、研究開発的に長期的な分析テーマ を持てる一方で、ビジネスサイドと双方向の議論ができるため、プロダクトグロースに積極的に 関われる点もデータサイエンスチームの魅力の1つです。 コメント Miyake Takanobu 学 習院大学卒業。データ分析 専門コンサル 企業やデジタル 系広告代理 店にて 受託側でデータ分析 を 担当。2021年 7月にグロービスに入社し、グロービス学 び放題について、 KPIマネジ メントに関 する分析、 利用ユー ザーに 対するアン ケート 調査、自 由記述データ分析による施策 企画支援、因 果推論による施策効果検証な どを 提案・実施している。 菅沼 元 データサイエンティスト グロービス学 び放題では、行 動ログ分析に 加えて、アン ケート 調査や ユー ザーインタビ ューな ど 多面的にプロダクトのグロースを検 討できることに 面白さを感じて入社を決めました。 また 扱う分析テーマの 多くは、 誰かに 押しつ けられるものではな く、データサイエンティスト 側 から、プロダクトや ユー ザーの 成長を 見据えて、ビジネスサイドに 企画 提案しています。そのた め分析の 上流工程を 担うスキルを 磨けることも大きな魅力 だと感じています。 コメント Su ganu ma Ha ji me
  23. 22 データサイエンス Unit のメンバー データサイエンスチームの紹介 早稲田大学大学院修了。消費財メーカーにて研究開発や商品開発に従事し、モノづくりに加え、 多変量解析やマーケティングリサーチに携わる。その後、SI企業にてデータサイエンティストに 転身し、営業支援のための様々なデータ分析プロジェクトに携わる。2022年9月にグロービスに 入社し、本チームに参画。 松浦

    諒 データサイエンティスト これからの 日本の 未来のために、多くの社 会人に 最適な学 習機会を届ける ことに 貢献した いと考え、入 社 を決め ました 。 また、 「メン バーの 高い専門性・多様 性と成長意欲」や 「豊富な 成長機会」といった 点も魅力で、 日々 刺激とス キルアップ を実感できる 環境です。加えて、 私は現在、 小さい子供2 人の 育児中な がらもリ モート 中心で快適に 働けて おり、 自身 と家庭とを第一に 考えて もらえる 環境は大変 あり がた いです。 グロービス でのデータの 利活用はまだまだや れる ことがたく さんあり ます。 ぜひ一緒に学 びの 未来を 作って いきまし ょう! コメント Matsuura Ryo 筑波大学大学院 システム 情報工学研究 科修了後、データ分析 コンサ ルティング企業に おいて 意思 決定に 活用するためのデータ 活用支援 を担当。ク ライ アントの 課題抽出から仮説の 構築や 課題解 決のためのデータ分析、 価値創出のための 施策提案を実施。2022年 7月 より本チームに参画。 伊藤 正裕 データサイエンティスト プロ ダクトのグロース を目的として、 施策に本 質的な 価値があるの かを見極める ところまでとこ とん取り 組むことができる ことに 魅力を感じ、参画 させて いた だく ことを決め ました 。 グロービス学 び放題というプロ ダクト は、 新たな社 会に 適応するための 新し い個の 能力や 技術の 習得に 貢献するサービス である と考えて います。 このプロ ダクト をデータサイエンス という手段 に よって より 魅力的な もの へと進化させ、 ユー ザーの 皆様の 「もっと学 びた い」という想いに 寄 り 添えるサービス とできる よう、 日々 尽力して いきた いと考えて います。 コメント I to Masahiro
  24. 23 データエンジニアリング Unit の紹介 データサイエンスチームの紹介 チームリーダー アドバイザー データエンジニアリング Unit プロダクト価値の向上

    └ 機械学習エンジニア 2名
   ※ 1名はデータエンジニアと兼務 質の高いデータ活用の土台づくり └ データエンジニア 2名 意思決定の質向上の支援 └ データサイエンティスト 3名 データサイエンス Unit
  25. 24 データエンジニアリング Unit の取り組み データサイエンスチームの紹介 ML システム データマネジメント 意思決定支援 データ基盤

    生産性向上 データ民主化 こ れ ま で の 取 り 組 み 今 後 取 り 組 み た い こ と ・「グロービス学び放題」におけるコンテンツの   推薦システムの開発・運用 ・サービス向け AI Bot の開発 ・ETL の開発・運用 ・ストリームデータ処理の導入 ・各種サービスの ID 統合の推進 ・監視機能の拡充 ・ダッシュボード開発・運用 ・KPI 監視機能開発・運用 ・データテストツールの導入 ・Infrastructure as Code ・MLOps ・CI/CD ・データ アー キテ クチャの 可視 化 ・ 社内データ統合の推進 ・ メタデータ 管理 ・CI/CD ・A/B テスト 支援システムの 提供 ・ 社内向けのデータ 活用 勉強会の 実施 ー
  26. 25 データ基盤のアーキテクチャ データサイエンスチームの紹介 Service fronts Service fronts Google Cloud Platform

    BigQuery datasets “source” dataset Outsourced services’ infrastructures Raw data (excluding personal information) Raw data Security, orchestration and monitoring Domain specific data Machine Learning In-house services’ infrastructures AWS Cloud Amazon ElastiCache for Redis Cloud IAM Cloud Storage Cloud Composer Logging Monitoring App Engine Vertex AI Transformed data “warehouse” dataset “mart” dataset Activations for business Business side members Data scientists, Analysts, Marketers etc Data Portal Tableau Jupyter Notebook In-house services’ infrastructures AWS Cloud AWS CodeBulld Amazon RDS Marketing tools Google Analytics Salesforce
  27. 26 データエンジニアリング Unit の利用技術 利用技術は、 組織や事業フェーズに合わせて 常にアップデートしています Python / SQL

    Cloud Composer BigQuery Google Kubernetes Engine AWS CodeBuild / Cloud Run / GitHub Actions Vertex AI / Jupyter Notebook Google Data Portal / Tableau Notion / Miro Slack 利用言語 データパイプライン DWH コンテナオーケストレーション CI/CD 分析環境 可視化ツール ナレッジベース コミュニケーションツール 利用言語 データパイプライン DWH コンテナオーケストレーション CI/CD 分析環境 可視化ツール ナレッジベース コミュニケーションツール データサイエンスチームの紹介
  28. 27 データエンジニアリング Unit のメンバー データサイエンスチームの紹介 Tameoka Akira Tanabe Tatsuya Suwa

    Ryo 大阪大学大学院情報科学研究科 (修士課程) を卒業後、toC 向け Web サービスを提供する企業に新卒入社。アプリケーションエン ジニアとしてキャリアをスタートし、インフラや機械学習基盤構 築、機械学習モデル開発等、幅広く経験後、2020年4月よりグロービ スデジタルプラットフォーム部門データサイエンスチームに参 画。機械学習モデルやデータ基盤の開発・運用を中心に、エンジニ アリング領域の業務を担当。 爲岡 啓 データエンジニア グロービス では大学院や研修 などの 教育事業に 加えて、グロービ ス学 び放題を はじめとする Ed Te ch サービスを 複数運 営して おり、 我々データサイエンスチーム は、 それらのサービスの 価値向 上や 新 たなプロ ダクト開発、 意思決定支援の ためデータ 活用を 推進し て います。 これまでの 取り 組みを 通じて 徐々に 成果は出て きて い る ものの、 まだまだ手がつけ られて いない領域 も多く、グロービス で一緒にデータ 活用を 推進して いただける 仲間を 募集して いま す ! コメン ト 東京大学 工学部卒業後 、クリニッ ク向け 予約シス テム開発企業に て 技術サ ポート 職に 就き、主に 顧客現場に おけるシス テム運用 保 守に 従事。その後A I領域にキャリア 転向し 、ウェアラ ブルス マー トグラス開発 会社 、A Iベン ダーにてエンジニア 職を経験し 、主に 画 像認識系のモデルやシス テム /ソリ ューション開発を担当 。 2022年 3月よりグロービスデジタルプラットフォーム部門データ サイエンスチームに参画 。 田邊 健也 機械学習エンジニア 社 会人向けの 教育サービスに おいて は、日々忙し いユー ザーに 対して いかに 効率良く 個人に 合ったコン テン ツを提供し 、学 びを 支援し 続ける こと できる かが重要な要素の 一つであると 考えて おり 、ユー ザー がサービスを 利用する中 で蓄積される 様々なデー タに 対して 、機械学習やデータインフラの 技術を 上手く 活用する こと で、その課 題に アプローチして いけるの ではないかと 考えて います 。グロービスのデータサイエンス チームに は様々なバッ クグラ ウン ドや 専門 性を 持つ方々がいらっし ゃって 、お互いの モチ ベーションを 尊重し 、声を かけ 合いながらも自律的に 目標を 立てて 仕事を 楽し ん でいけるよ うなチーム 作りを 目指して いこうと いう雰囲気があり ます 。データを 活用 し たサービス 作り は容易に 行かないと ころもたく さんある中 で、事業に 与えるイン パ クトを 間近に 感じつつ仲間と 試行錯誤し ながら挑戦して いける 環境がグロービス はあ ると 感じて います 。 コメン ト 東京大学 理学部卒業 。都内 IT 企業にて 、事業企画 およ び不動産系 Web サービスの 事業 成長の ためのデータ 分析 ( EDA 、A /Bテス ト 、 モニタリング等) に 従事。202 1年4月より 、株式会社グロー ビスの デジタル・プラットフォーム部門データサイエンスチーム の 取り 組みに参画 。 諏訪 遼 データサイエン ティス ト データエンジニア グロービス・デジタル・プラットフォーム部門のサービスと 意思 決定を 支える ため、質の 高いデータ パイプラインの開発・運用に 取り 組んでいます 。業務に 取り 組む中 で日々意識して いる こと は、データ 活用を 通じて 事業や お客様へ意味ある 貢献をする こ と 、そして 何より も、この 刺激的な仕事をチームの 仲間とと もに 思いきり 楽し むこと です 。経 営教育は、学 び手である お客様の 考 え方と 行動の 変化を 通じ、社 会にプラスの 影響を 与えられるビジ ネス領域 です 。この 分野で重要な位置を 占めるグロービスのサー ビスに 関われる ことに 、大 きな魅力と 可能性を 感じて います 。 コメン ト
  29. 1 デジタルプラットフォーム部門の紹介 2 データサイエンスチームの紹介 3 組織文化・働き方 4 選考フロー

  30. 29 グロービスの組織文化 「経営に関する専門知識をもち、バイタリティーあふれ、人の心がわかり、主体的に問題解決を図れる人材」が集まり、 再生産される仕組みを作りたいと考えています 組織文化・働き方 Push the Limits GDPが大切にしたいValue 今見えている境界や、限界を広げていく

    姿勢を持ち、大胆に前に突き進んでいきます オールスタッフミーティング 年始に全社員に共有した各事業部の 目標について、四半期毎に全社員で進捗を 確認します WOL(Working Out Loud) リモート環境でパフォーマンスを上げるため、 積極的な会話やWeb会議での顔出しなど オープンコミュニケーションを推奨しています リトリート 日常 業務 から離 れ、ア イデア の創造・ 共有や発想 の 転換等 を促 すよう な環境で、議論 や思索 を行 います 毎年2-3月 に1泊 2日 で実施 しています 優先順 1 . 社員自 身   2. 家 族   3 . 仕事の優 先 順 を 大事にしています プレジデ ントアワ ード 「創 造 と変 革 の部」「成 長 と牽 引 の部」 「ファ カ ル ティグ ル ープの部」の3 部門で、 グ ロ ービ スの発 展 と良 き企 業文 化 の醸 成 に 貢 献 したスタッ フやチ ーム を表 彰 しています
  31. 30 働き方・制度 「自由と自己責任原則」を堅持追求し、性悪説に則った「規則やルールによる管理主義」は 可能な限り排除したいと考えています 組織文化・働き方 フルフレックス ハイブリッドワーク 20%ルール モブプログラミング 週次の1on1

    エンジニア向けMacBook Pro貸与 自由に触れるAWS・GCP環境 初年度有給20日 副業可 育児・介護休暇 人間ドック インフルエンザ予防接種 社宅制度 茨城ロボッツ観戦ツアー GO縁ごはん(採用会食) スクール受講支援 GLOBIS学び放題受講支援 自己啓発支援制度 勉強会 読書会 1年目・3年目研修 社外現場知修得 アスペン研究所セミナー派遣 海外短期留学 海外カンファレンス派遣 働 き 方 制 度 能 力 開 発
  32. 31 テクノロジー職の人事制度 組織文化・働き方 技術専門性を高めていくか、 技術をベースにした マネジメントでのキャリアを 開発するか選択できます 職掌内には4つのタイトルがあり、職掌及び タイトル要件に沿って事業貢献、グループ貢献、 自己開発を進めることが求められます

    900 700 500 400 T1 T2 マネジメント リーダー 担当者 スペシャリスト T3 T4
  33. 32 テクノロジー職評価の参考指標 組織文化・働き方 評価は年二回実施し、 双方向のコミュニケーションを 大切にしています 「個人の業績」「能力の向上」「将来の期待」の総合的 評価と「ジョブマーケットにおける相場」を勘案し決定 しています OKR

    360度評価 MBO 自己申告 飛躍的成長を遂げるために、期中の 注力ポイントのフォーカスと公開、 週次の振り返りをチーム単位で実施 します GLOBIS Way、「事業指針(3SCH)」 「スタッフWAY(行動指針)」 「リーダーWAY」の体現度合いを、 一緒に働く仲間とともに確認します 顕在化した成 果、 発揮された能力 、 開 発された能力に ついて確認しま す 職務に 関してリーダーとの 1on1で 率直に 話し合います 雇用形態、 職掌、タイト ル、 ラン ク などに ついて 自己評価 や上長の 推薦 に 基づき申告します 四半期 四半期 通期 通期
  34. 1 デジタルプラットフォーム部門の紹介 2 データサイエンスチームの紹介 3 組織文化・働き方 4 選考フロー

  35. 34 デジタルプラットフォーム部門の選考フロー 書類選考通過後の面接は全3回オンラインで実施、スキルとカルチャーフィット、学びや育成への志向を確認しています 選考フロー 同職種のメンバー プロダクトオーナー 部門役員 部門長、人事 VPoE 一

    次 面 接 最 終 面 接 二 次 面 接 企業の学びに変革を興したいメンバーを募集しています カジュアル面談も大歓迎です! これまでのご経験やスキル、志向、働き方が 組織やプロダクトの状況とフィットするかを 中心に進めます プロダクトの長期ビジョンへ共感いただける か、価値観が組織とフィットするかを中心に進 めます 部門役員と、ご経験や志向が 会社の 文化や価値 観とフィットするかを中心に進めま す 最終面接を通過するとオフ ァー面 談が 設定され ます ※ 面接の 順番や回 数は 変更する 場合が ありま す ※ 全ての面接は リモートでの実施が 可能です
  36. 35 募集職種一覧 プロダクトや事業開発に関わる幅広い職種のメンバーを募集しています 選考フロー サーバーサイドエンジニア フロントエンドエンジニア iOSエンジニア Androidエンジニア UXデザイナー UIデザイナー

    データエンジニア データサイエンティスト QAエンジニア SRE 社内SE プロダクトマネージャー プロダクトオーナー プロジェクトマネージャー 事業企画 マーケター など 最新の募集状況はこちらからご確認ください
  37. 36 More Info グロービスのテクノロジーに関する情報を、さまざまな媒体から発信しています 選考フロー note Twitter その他、Meetyなども実施しています。詳しくはこちら! Podcasts

  38. We are hiring!