Im( I) ! exclude this case. Exclude hyperplanes: HI,j d s j (¯ y, ¯) = |h 'j, ¯ y I ˆ x¯(¯ y )i| 6 Case 2: ds j (y, ) = and 'j 2 Im( I) Case 1: ds j (y, ) < H = [ {Hs,j \ 'j / 2 Im( I)} Hs,j = (y, ) \ ds j (¯ y, ¯) = then ds j(¯ y, ¯) = ¯ ! ok. Proof ˆ x¯ (¯ y) I = + I ¯ y ¯( I I ) 1sI To show: 8 j / 2 I, Case 3: ds j (y, ) = and I = supp(s)