Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
ブラックボックス最適化とその応用
Search
gree_tech
PRO
July 19, 2019
Technology
0
320
ブラックボックス最適化とその応用
『CCSE2019』で発表された資料です。
https://ccse.jp/2019/
gree_tech
PRO
July 19, 2019
Tweet
Share
More Decks by gree_tech
See All by gree_tech
LLM翻訳ツールの開発と海外のお客様対応等への社内導入事例
gree_tech
PRO
0
670
ヘブンバーンズレッドのレンダリングパイプライン刷新
gree_tech
PRO
0
680
ヘブンバーンズレッドにおける、世界観を活かしたミニゲーム企画の作り方
gree_tech
PRO
0
670
「魔法少女まどか☆マギカ Magia Exedra」のグローバル展開を支える、開発チームと翻訳チームの「意識しない協創」を実現するローカライズシステム
gree_tech
PRO
0
670
「魔法少女まどか☆マギカ Magia Exedra」での負荷試験の実践と学び
gree_tech
PRO
0
710
「魔法少女まどか☆マギカ Magia Exedra」の必殺技演出を徹底解剖! -キャラクターの魅力を最大限にファンに届けるためのこだわり-
gree_tech
PRO
0
680
ヒューリスティック評価を用いたゲームQA実践事例
gree_tech
PRO
0
670
ライブサービスゲームQAのパフォーマンス検証による品質改善の取り組み
gree_tech
PRO
0
670
コミュニケーションに鍵を見いだす、エンジニア1年目の経験談
gree_tech
PRO
0
140
Other Decks in Technology
See All in Technology
機械学習を扱うプラットフォーム開発と運用事例
lycorptech_jp
PRO
0
690
Unlocking the Power of AI Agents with LINE Bot MCP Server
linedevth
0
120
「全員プロダクトマネージャー」を実現する、Cursorによる仕様検討の自動運転
applism118
22
12k
LLMを搭載したプロダクトの品質保証の模索と学び
qa
1
1.1k
「その開発、認知負荷高すぎませんか?」Platform Engineeringで始める開発者体験カイゼン術
sansantech
PRO
2
1k
20250912_RPALT_データを集める→とっ散らかる問題_Obsidian紹介
ratsbane666
0
100
人工衛星のファームウェアをRustで書く理由
koba789
15
8.3k
CDK CLIで使ってたあの機能、CDK Toolkit Libraryではどうやるの?
smt7174
4
190
Snowflake Intelligence × Document AIで“使いにくいデータ”を“使えるデータ”に
kevinrobot34
1
130
KotlinConf 2025_イベントレポート
sony
1
140
AWSを利用する上で知っておきたい名前解決のはなし(10分版)
nagisa53
10
3.2k
20250913_JAWS_sysad_kobe
takuyay0ne
2
260
Featured
See All Featured
Practical Tips for Bootstrapping Information Extraction Pipelines
honnibal
PRO
23
1.4k
The Myth of the Modular Monolith - Day 2 Keynote - Rails World 2024
eileencodes
26
3k
The Psychology of Web Performance [Beyond Tellerrand 2023]
tammyeverts
49
3k
Reflections from 52 weeks, 52 projects
jeffersonlam
352
21k
Fireside Chat
paigeccino
39
3.6k
Why You Should Never Use an ORM
jnunemaker
PRO
59
9.5k
The Straight Up "How To Draw Better" Workshop
denniskardys
236
140k
Facilitating Awesome Meetings
lara
55
6.5k
A better future with KSS
kneath
239
17k
Exploring the Power of Turbo Streams & Action Cable | RailsConf2023
kevinliebholz
34
6k
Optimizing for Happiness
mojombo
379
70k
Side Projects
sachag
455
43k
Transcript
Copyright © GREE, Inc. All Rights Reserved. ϒϥοΫϘοΫε࠷దԽͱͦͷԠ༻ ඌ࡚ Յ
Copyright © GREE, Inc. All Rights Reserved. ॴଐ • άϦʔגࣜձࣾ
AIϦαʔννʔϜ ΤϯδχΞ • ࢈ۀٕज़૯߹ݚڀॴ ਓೳݚڀηϯλʔ ಛఆूதݚڀઐһʢ݉ʣ ݚڀ • ඍϑϦʔ࠷దԽɾϒϥοΫϘοΫε࠷దԽ • Automated Machine Learning (AutoML) ඌ࡚ Յ https://y0z.github.io/about/
Copyright © GREE, Inc. All Rights Reserved. • ԿΒ͔ͷతؔΛಛఆ੍ԼͰ࠷খԽʢͳ͍͠࠷େԽʣ͢Δ
! • Ұൠʹ! ʹؔͯ͠ಘΒΕΔใɼ͓͚ΔԾఆ͕ଟ͍΄Ͳޮతʹղ͚Δ • Ұ࣍ͷޯใɼೋ࣍ͷޯใ • ತੑɼϦϓγοπ࿈ଓੑɼྼϞδϡϥੑ Minimize f(x) subject to x ∈ X f(x) ཧ࠷దԽ
Copyright © GREE, Inc. All Rights Reserved. • ήʔϜͷόϥϯεΛࠨӈ͢Δύϥϝʔλͷࣗಈௐ •
ԿΒ͔ͷείΞ! (ྫ͑ɼউ)ήʔϜγϛϡϨʔλΛಈ࡞ͤ͞Δ ͜ͱͰಘΒΕΔ͕ɼ! ͷৄࡉखʹෛ͑ͳ͍΄Ͳෳࡶ • ػցֶशϞσϧͷϋΠύύϥϝʔλ࠷దԽ • AutoMLͷத৺త՝ͷ1ͭ (Feurer and Hutter, 2019) • Ϟσϧੑೳ! ͕࠷ྑͱͳΔϋΠύύϥϝʔλ! ͷ୳ࡧʢؔඇࣗ໌ʣ f(x) f(x) f(x) x ݱʹ”ϒϥοΫϘοΫε”͕ؔଟ
Copyright © GREE, Inc. All Rights Reserved. • యܕతͳઃఆ •
తؔ! ͷΈ͕؍ଌՄೳ • ݪଇͱͯ͠ޯใؔͷੑ࣭ͳͲΛར༻Ͱ͖ͳ͍ • ؔධՁίετ͕ߴ͍ʢήʔϜγϛϡϨʔγϣϯϞσϧͷֶशʣ • తؔΛධՁͰ͖ΔճʹݶΓ͕͋Δ • ؍ଌϊΠζΛ͏ʢήʔϜͷ݁Ռֶशͷ݁Ռʹཚ͕Өڹʣ • ͏গ͠ϦονͳઃఆΛάϨΠϘοΫε࠷దԽͱݺͿ͜ͱ͕͋Δ • ϚϧνϑΟσϦςΟ࠷దԽ • ࢀߟɿGrey-box Bayesian Optimization for AutoML https://slideslive.com/38916582/keynote-greybox-bayesian- optimization-for-automl f(x) ϒϥοΫϘοΫε࠷దԽ
Copyright © GREE, Inc. All Rights Reserved. • ϕΠζ࠷దԽɾόϯσΟοτΞϧΰϦζϜ ػցֶशܥݚڀऀΒ͕ΜʹݚڀɼGP-EIɼSMACɼTPEͳͲ
• ਐԽܭࢉ Population-based methodsͱɼCMA-ESͳͲ • ୳ࡧ๏ Nelder–Mead๏ɼMADSͳͲ • اۀϒϥοΫϘοΫε࠷దԽιϑτΣΞ։ൃʹਚྗ • Google Vizier (Google) • Optuna (PFN) • Nevergrad (Facebook) ϒϥοΫϘοΫε࠷దԽख๏
Copyright © GREE, Inc. All Rights Reserved. • ϕΠζ࠷దԽɾόϯσΟοτΞϧΰϦζϜ ػցֶशܥݚڀऀΒ͕ΜʹݚڀɼGP-EIɼSMACɼTPEͳͲ
• ਐԽܭࢉ Population-based methodsͱɼCMA-ESͳͲ • ୳ࡧ๏ Nelder–Mead๏ɼMADSͳͲ • اۀϒϥοΫϘοΫε࠷దԽιϑτΣΞ։ൃʹਚྗ • Google Vizier (Google) • Optuna (PFN) • Nevergrad (Facebook) ϒϥοΫϘοΫε࠷దԽख๏
Copyright © GREE, Inc. All Rights Reserved. • ؔධՁͱ୯ମͷมܗΛ܁Γฦ͢ඍϑϦʔہॴ୳ࡧώϡʔϦεςΟοΫ •
ϋΠύύϥϝʔλ࠷దԽΛؚΉɼ࣮༻্ͷଟ͘ͷͰ্ख͘ಇ͘ (Cohen et al., 2005; Ozaki et al., 2017) Nelder–Mead๏ Nelder and Mead, 1965 CNNͷϋΠύύϥϝʔλ࠷దԽ (Ozaki et al., 2017)
Copyright © GREE, Inc. All Rights Reserved. Nelder–Mead๏ reflect, expand,
inside contract, outside contract, shrinkͷ5छྨͷૢ࡞Λ෮తʹద༻ reflect, expand, inside contract, outside contract shrink
Copyright © GREE, Inc. All Rights Reserved. • Nelder–Mead๏ͷ୳ࡧ֤ͷධՁʹج͖ͮஞ࣍తʹܾ·ΔͨΊɼ ͜ͷख๏ฒྻԽʹෆ͖Ͱ͋Γɼ࣮༻্େ͖ͳ՝
• తؔͷαϩήʔτ্ͰɼNelder–Mead๏Λ࣮ߦ͢ΔϞϯςΧϧϩ๏ʹ ΑΓɼධՁ͞ΕΔݟࠐΈͷߴ͍Λ༧ଌ͠ɼػతʹධՁ ༧ଌʹجͮ͘ฒྻධՁʹΑΔNelder–Mead๏ͷߴԽ Accelerating the Nelder–Mead Method with Predictive Parallel Evaluation Yoshihiko Ozaki, Shuhei Watanabe, and Masaki Onishi 6th ICML Workshop on Automated Machine Learning, Jun 2019. ! ΛԾఆ͠ɼ! Ψεաఔ͔ΒͷαϯϓϧΛද͢ f(x) ∼ GP(m(x), k(x, x′)) g(x)
Copyright © GREE, Inc. All Rights Reserved. 1.ॳظ୯ମʹؚ·ΕΔΛฒྻධՁ 2.ະධՁʹ౸ୡ͢Δ·Ͱɼଓ͖͔ΒNelder–Mead๏Λ࣮ߦ 3.ϞϯςΧϧϩ๏Λ࣮ߦ͠ɼػతʹධՁ͢ΔPݸͷީิΛٻΊɼฒྻධՁ
4.࠷దԽͷఀࢭ݅Λຬ͍ͨͯ͠Ε݁ՌΛฦ͠ɼͦ͏Ͱͳ͚Ε2.ʹΔ ༧ଌʹجͮ͘ฒྻධՁʹΑΔNelder–Mead๏ͷߴԽ ఏҊख๏ ! ΛԾఆ͠ɼ! Ψεաఔ͔ΒͷαϯϓϧΛද͢ f(x) ∼ GP(m(x), k(x, x′)) g(x)
Copyright © GREE, Inc. All Rights Reserved. •࣮ݧઃఆ • 6छྨͷϋΠύύϥϝʔλΛ࠷దԽ͢ΔϕϯνϚʔΫ
(Klein et al., 2018) • ฒྻ! Ͱݻఆ͠ɼઌಡΈΠςϨʔγϣϯ! Ͱ࣮ݧ • Baseline 1ɼॳظԽͱshrinkૢ࡞ͷΈฒྻධՁ (ࣗ໌ͳฒྻԽ) • Baseline 2ɼ࣍ΠςϨʔγϣϯͰධՁ͞ΕಘΔશͯͷΛฒྻධՁ •݁Ռ • Baseline 1ʹൺ49%ߴԽɼ2ʹൺ13%ߴԽ͔ͭগͳ͍ධՁ P = 10 J = 1,2,3,4,5 ༧ଌʹجͮ͘ฒྻධՁʹΑΔNelder–Mead๏ͷߴԽ ܭࢉ࣮ݧ Method J Average # of eval steps Average # of evaluations Baseline 1 - 590.27 (±141.42) 614.10 (±142.82) Baseline 2 - 347.27 (±89.32) 3469.67 (±893.21) Proposed 1 406.20 (±97.24) 1534.20 (±427.69) 2 314.13 (±72.26) 2307.83 (±558.02) 3 304.97 (±54.57) 2679.13 (±464.80) 4 310.60 (±67.58) 2948.20 (±642.62) 5 301.90 (±58.70) 2942.33 (±567.27)
Copyright © GREE, Inc. All Rights Reserved. • ฒྻ! ɼઌಡΈΠςϨʔγϣϯ!
Λ࣮ݧ • ߴԽͷޮՌ͋Δఔͷ! ·Ͱεέʔϧ͢Δ͕ɼͦΕҎ্མͪண͘ ʢઌͷΠςϨʔγϣϯʹͳΔ΄ͲɼධՁ͞ΕΔͷ༧ଌ͘͠ͳΔʣ P = 10,20,30,40 J = 1,2,3,4,5 P, J ༧ଌʹجͮ͘ฒྻධՁʹΑΔNelder–Mead๏ͷߴԽ ܭࢉ࣮ݧ
Copyright © GREE, Inc. All Rights Reserved. • ϒϥοΫϘοΫε࠷దԽۃΊͯ༗༻ •
ϋΠύύϥϝʔλ࠷దԽɼήʔϜͷύϥϝʔλࣗಈௐͳͲԠ༻ଟ • ٳܜ࣌ؒʹσΟεΧογϣϯܴ • 8݄5ͷKDD AutoML Workshopʹͯ࠷৽ͷݚڀʹ͍ͭͯൃද༧ఆ • Yoshihiko Ozaki and Masaki Onishi, “Practical Deep Neural Network Performance Prediction for Hyperparameter Optimization,” To appear. • https://sites.google.com/view/automl2019-workshop/ ·ͱΊ
Copyright © GREE, Inc. All Rights Reserved.