Lock in $30 Savings on PRO—Offer Ends Soon! ⏳
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
ブラックボックス最適化とその応用
Search
gree_tech
PRO
July 19, 2019
Technology
0
420
ブラックボックス最適化とその応用
『CCSE2019』で発表された資料です。
https://ccse.jp/2019/
gree_tech
PRO
July 19, 2019
Tweet
Share
More Decks by gree_tech
See All by gree_tech
変わるもの、変わらないもの :OSSアーキテクチャで実現する持続可能なシステム
gree_tech
PRO
0
2.4k
マネジメントに役立つ Google Cloud
gree_tech
PRO
0
27
今この時代に技術とどう向き合うべきか
gree_tech
PRO
3
2.4k
生成AIを開発組織にインストールするために: REALITYにおけるガバナンス・技術・文化へのアプローチ
gree_tech
PRO
0
160
安く・手軽に・現場発 既存資産を生かすSlack×AI検索Botの作り方
gree_tech
PRO
0
160
生成AIを安心して活用するために──「情報セキュリティガイドライン」策定とポイント
gree_tech
PRO
1
1.5k
あうもんと学ぶGenAIOps
gree_tech
PRO
0
270
MVP開発における生成AIの活用と導入事例
gree_tech
PRO
0
300
機械学習・生成AIが拓く事業価値創出の最前線
gree_tech
PRO
0
210
Other Decks in Technology
See All in Technology
Kiro を用いたペアプロのススメ
taikis
4
1.7k
事業の財務責任に向き合うリクルートデータプラットフォームのFinOps
recruitengineers
PRO
2
190
SREが取り組むデプロイ高速化 ─ Docker Buildを最適化した話
capytan
0
140
意外と知らない状態遷移テストの世界
nihonbuson
PRO
1
230
LayerX QA Night#1
koyaman2
0
250
Entity Framework Core におけるIN句クエリ最適化について
htkym
0
120
アプリにAIを正しく組み込むための アーキテクチャ── 国産LLMの現実と実践
kohju
0
210
[2025-12-12]あの日僕が見た胡蝶の夢 〜人の夢は終わらねェ AIによるパフォーマンスチューニングのすゝめ〜
tosite
0
170
"人"が頑張るAI駆動開発
yokomachi
1
120
20251222_サンフランシスコサバイバル術
ponponmikankan
2
140
_第4回__AIxIoTビジネス共創ラボ紹介資料_20251203.pdf
iotcomjpadmin
0
130
日本Rubyの会: これまでとこれから
snoozer05
PRO
5
230
Featured
See All Featured
Navigating Weather and Climate Data
rabernat
0
51
Paper Plane (Part 1)
katiecoart
PRO
0
1.9k
Tell your own story through comics
letsgokoyo
0
760
Joys of Absence: A Defence of Solitary Play
codingconduct
1
260
[Rails World 2023 - Day 1 Closing Keynote] - The Magic of Rails
eileencodes
37
2.7k
Leveraging Curiosity to Care for An Aging Population
cassininazir
1
130
Marketing to machines
jonoalderson
1
4.3k
The AI Revolution Will Not Be Monopolized: How open-source beats economies of scale, even for LLMs
inesmontani
PRO
2
2.8k
A better future with KSS
kneath
240
18k
The Cult of Friendly URLs
andyhume
79
6.7k
Prompt Engineering for Job Search
mfonobong
0
120
Reality Check: Gamification 10 Years Later
codingconduct
0
1.9k
Transcript
Copyright © GREE, Inc. All Rights Reserved. ϒϥοΫϘοΫε࠷దԽͱͦͷԠ༻ ඌ࡚ Յ
Copyright © GREE, Inc. All Rights Reserved. ॴଐ • άϦʔגࣜձࣾ
AIϦαʔννʔϜ ΤϯδχΞ • ࢈ۀٕज़૯߹ݚڀॴ ਓೳݚڀηϯλʔ ಛఆूதݚڀઐһʢ݉ʣ ݚڀ • ඍϑϦʔ࠷దԽɾϒϥοΫϘοΫε࠷దԽ • Automated Machine Learning (AutoML) ඌ࡚ Յ https://y0z.github.io/about/
Copyright © GREE, Inc. All Rights Reserved. • ԿΒ͔ͷతؔΛಛఆ੍ԼͰ࠷খԽʢͳ͍͠࠷େԽʣ͢Δ
! • Ұൠʹ! ʹؔͯ͠ಘΒΕΔใɼ͓͚ΔԾఆ͕ଟ͍΄Ͳޮతʹղ͚Δ • Ұ࣍ͷޯใɼೋ࣍ͷޯใ • ತੑɼϦϓγοπ࿈ଓੑɼྼϞδϡϥੑ Minimize f(x) subject to x ∈ X f(x) ཧ࠷దԽ
Copyright © GREE, Inc. All Rights Reserved. • ήʔϜͷόϥϯεΛࠨӈ͢Δύϥϝʔλͷࣗಈௐ •
ԿΒ͔ͷείΞ! (ྫ͑ɼউ)ήʔϜγϛϡϨʔλΛಈ࡞ͤ͞Δ ͜ͱͰಘΒΕΔ͕ɼ! ͷৄࡉखʹෛ͑ͳ͍΄Ͳෳࡶ • ػցֶशϞσϧͷϋΠύύϥϝʔλ࠷దԽ • AutoMLͷத৺త՝ͷ1ͭ (Feurer and Hutter, 2019) • Ϟσϧੑೳ! ͕࠷ྑͱͳΔϋΠύύϥϝʔλ! ͷ୳ࡧʢؔඇࣗ໌ʣ f(x) f(x) f(x) x ݱʹ”ϒϥοΫϘοΫε”͕ؔଟ
Copyright © GREE, Inc. All Rights Reserved. • యܕతͳઃఆ •
తؔ! ͷΈ͕؍ଌՄೳ • ݪଇͱͯ͠ޯใؔͷੑ࣭ͳͲΛར༻Ͱ͖ͳ͍ • ؔධՁίετ͕ߴ͍ʢήʔϜγϛϡϨʔγϣϯϞσϧͷֶशʣ • తؔΛධՁͰ͖ΔճʹݶΓ͕͋Δ • ؍ଌϊΠζΛ͏ʢήʔϜͷ݁Ռֶशͷ݁Ռʹཚ͕Өڹʣ • ͏গ͠ϦονͳઃఆΛάϨΠϘοΫε࠷దԽͱݺͿ͜ͱ͕͋Δ • ϚϧνϑΟσϦςΟ࠷దԽ • ࢀߟɿGrey-box Bayesian Optimization for AutoML https://slideslive.com/38916582/keynote-greybox-bayesian- optimization-for-automl f(x) ϒϥοΫϘοΫε࠷దԽ
Copyright © GREE, Inc. All Rights Reserved. • ϕΠζ࠷దԽɾόϯσΟοτΞϧΰϦζϜ ػցֶशܥݚڀऀΒ͕ΜʹݚڀɼGP-EIɼSMACɼTPEͳͲ
• ਐԽܭࢉ Population-based methodsͱɼCMA-ESͳͲ • ୳ࡧ๏ Nelder–Mead๏ɼMADSͳͲ • اۀϒϥοΫϘοΫε࠷దԽιϑτΣΞ։ൃʹਚྗ • Google Vizier (Google) • Optuna (PFN) • Nevergrad (Facebook) ϒϥοΫϘοΫε࠷దԽख๏
Copyright © GREE, Inc. All Rights Reserved. • ϕΠζ࠷దԽɾόϯσΟοτΞϧΰϦζϜ ػցֶशܥݚڀऀΒ͕ΜʹݚڀɼGP-EIɼSMACɼTPEͳͲ
• ਐԽܭࢉ Population-based methodsͱɼCMA-ESͳͲ • ୳ࡧ๏ Nelder–Mead๏ɼMADSͳͲ • اۀϒϥοΫϘοΫε࠷దԽιϑτΣΞ։ൃʹਚྗ • Google Vizier (Google) • Optuna (PFN) • Nevergrad (Facebook) ϒϥοΫϘοΫε࠷దԽख๏
Copyright © GREE, Inc. All Rights Reserved. • ؔධՁͱ୯ମͷมܗΛ܁Γฦ͢ඍϑϦʔہॴ୳ࡧώϡʔϦεςΟοΫ •
ϋΠύύϥϝʔλ࠷దԽΛؚΉɼ࣮༻্ͷଟ͘ͷͰ্ख͘ಇ͘ (Cohen et al., 2005; Ozaki et al., 2017) Nelder–Mead๏ Nelder and Mead, 1965 CNNͷϋΠύύϥϝʔλ࠷దԽ (Ozaki et al., 2017)
Copyright © GREE, Inc. All Rights Reserved. Nelder–Mead๏ reflect, expand,
inside contract, outside contract, shrinkͷ5छྨͷૢ࡞Λ෮తʹద༻ reflect, expand, inside contract, outside contract shrink
Copyright © GREE, Inc. All Rights Reserved. • Nelder–Mead๏ͷ୳ࡧ֤ͷධՁʹج͖ͮஞ࣍తʹܾ·ΔͨΊɼ ͜ͷख๏ฒྻԽʹෆ͖Ͱ͋Γɼ࣮༻্େ͖ͳ՝
• తؔͷαϩήʔτ্ͰɼNelder–Mead๏Λ࣮ߦ͢ΔϞϯςΧϧϩ๏ʹ ΑΓɼධՁ͞ΕΔݟࠐΈͷߴ͍Λ༧ଌ͠ɼػతʹධՁ ༧ଌʹجͮ͘ฒྻධՁʹΑΔNelder–Mead๏ͷߴԽ Accelerating the Nelder–Mead Method with Predictive Parallel Evaluation Yoshihiko Ozaki, Shuhei Watanabe, and Masaki Onishi 6th ICML Workshop on Automated Machine Learning, Jun 2019. ! ΛԾఆ͠ɼ! Ψεաఔ͔ΒͷαϯϓϧΛද͢ f(x) ∼ GP(m(x), k(x, x′)) g(x)
Copyright © GREE, Inc. All Rights Reserved. 1.ॳظ୯ମʹؚ·ΕΔΛฒྻධՁ 2.ະධՁʹ౸ୡ͢Δ·Ͱɼଓ͖͔ΒNelder–Mead๏Λ࣮ߦ 3.ϞϯςΧϧϩ๏Λ࣮ߦ͠ɼػతʹධՁ͢ΔPݸͷީิΛٻΊɼฒྻධՁ
4.࠷దԽͷఀࢭ݅Λຬ͍ͨͯ͠Ε݁ՌΛฦ͠ɼͦ͏Ͱͳ͚Ε2.ʹΔ ༧ଌʹجͮ͘ฒྻධՁʹΑΔNelder–Mead๏ͷߴԽ ఏҊख๏ ! ΛԾఆ͠ɼ! Ψεաఔ͔ΒͷαϯϓϧΛද͢ f(x) ∼ GP(m(x), k(x, x′)) g(x)
Copyright © GREE, Inc. All Rights Reserved. •࣮ݧઃఆ • 6छྨͷϋΠύύϥϝʔλΛ࠷దԽ͢ΔϕϯνϚʔΫ
(Klein et al., 2018) • ฒྻ! Ͱݻఆ͠ɼઌಡΈΠςϨʔγϣϯ! Ͱ࣮ݧ • Baseline 1ɼॳظԽͱshrinkૢ࡞ͷΈฒྻධՁ (ࣗ໌ͳฒྻԽ) • Baseline 2ɼ࣍ΠςϨʔγϣϯͰධՁ͞ΕಘΔશͯͷΛฒྻධՁ •݁Ռ • Baseline 1ʹൺ49%ߴԽɼ2ʹൺ13%ߴԽ͔ͭগͳ͍ධՁ P = 10 J = 1,2,3,4,5 ༧ଌʹجͮ͘ฒྻධՁʹΑΔNelder–Mead๏ͷߴԽ ܭࢉ࣮ݧ Method J Average # of eval steps Average # of evaluations Baseline 1 - 590.27 (±141.42) 614.10 (±142.82) Baseline 2 - 347.27 (±89.32) 3469.67 (±893.21) Proposed 1 406.20 (±97.24) 1534.20 (±427.69) 2 314.13 (±72.26) 2307.83 (±558.02) 3 304.97 (±54.57) 2679.13 (±464.80) 4 310.60 (±67.58) 2948.20 (±642.62) 5 301.90 (±58.70) 2942.33 (±567.27)
Copyright © GREE, Inc. All Rights Reserved. • ฒྻ! ɼઌಡΈΠςϨʔγϣϯ!
Λ࣮ݧ • ߴԽͷޮՌ͋Δఔͷ! ·Ͱεέʔϧ͢Δ͕ɼͦΕҎ্མͪண͘ ʢઌͷΠςϨʔγϣϯʹͳΔ΄ͲɼධՁ͞ΕΔͷ༧ଌ͘͠ͳΔʣ P = 10,20,30,40 J = 1,2,3,4,5 P, J ༧ଌʹجͮ͘ฒྻධՁʹΑΔNelder–Mead๏ͷߴԽ ܭࢉ࣮ݧ
Copyright © GREE, Inc. All Rights Reserved. • ϒϥοΫϘοΫε࠷దԽۃΊͯ༗༻ •
ϋΠύύϥϝʔλ࠷దԽɼήʔϜͷύϥϝʔλࣗಈௐͳͲԠ༻ଟ • ٳܜ࣌ؒʹσΟεΧογϣϯܴ • 8݄5ͷKDD AutoML Workshopʹͯ࠷৽ͷݚڀʹ͍ͭͯൃද༧ఆ • Yoshihiko Ozaki and Masaki Onishi, “Practical Deep Neural Network Performance Prediction for Hyperparameter Optimization,” To appear. • https://sites.google.com/view/automl2019-workshop/ ·ͱΊ
Copyright © GREE, Inc. All Rights Reserved.