Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
ブラックボックス最適化とその応用
Search
gree_tech
PRO
July 19, 2019
Technology
0
550
ブラックボックス最適化とその応用
『CCSE2019』で発表された資料です。
https://ccse.jp/2019/
gree_tech
PRO
July 19, 2019
Tweet
Share
More Decks by gree_tech
See All by gree_tech
変わるもの、変わらないもの :OSSアーキテクチャで実現する持続可能なシステム
gree_tech
PRO
0
3.2k
マネジメントに役立つ Google Cloud
gree_tech
PRO
0
37
今この時代に技術とどう向き合うべきか
gree_tech
PRO
3
2.5k
生成AIを開発組織にインストールするために: REALITYにおけるガバナンス・技術・文化へのアプローチ
gree_tech
PRO
0
240
安く・手軽に・現場発 既存資産を生かすSlack×AI検索Botの作り方
gree_tech
PRO
0
230
生成AIを安心して活用するために──「情報セキュリティガイドライン」策定とポイント
gree_tech
PRO
1
1.6k
あうもんと学ぶGenAIOps
gree_tech
PRO
0
340
MVP開発における生成AIの活用と導入事例
gree_tech
PRO
0
370
機械学習・生成AIが拓く事業価値創出の最前線
gree_tech
PRO
0
260
Other Decks in Technology
See All in Technology
GitHub Issue Templates + Coding Agentで簡単みんなでIaC/Easy IaC for Everyone with GitHub Issue Templates + Coding Agent
aeonpeople
1
260
M&A 後の統合をどう進めるか ─ ナレッジワーク × Poetics が実践した組織とシステムの融合
kworkdev
PRO
1
510
こんなところでも(地味に)活躍するImage Modeさんを知ってるかい?- Image Mode for OpenShift -
tsukaman
1
170
コンテナセキュリティの最新事情 ~ 2026年版 ~
kyohmizu
6
2k
広告の効果検証を題材にした因果推論の精度検証について
zozotech
PRO
0
210
AIと新時代を切り拓く。これからのSREとメルカリIBISの挑戦
0gm
2
3.2k
制約が導く迷わない設計 〜 信頼性と運用性を両立するマイナンバー管理システムの実践 〜
bwkw
3
1k
茨城の思い出を振り返る ~CDKのセキュリティを添えて~ / 20260201 Mitsutoshi Matsuo
shift_evolve
PRO
1
410
CDKで始めるTypeScript開発のススメ
tsukuboshi
1
560
30万人の同時アクセスに耐えたい!新サービスの盤石なリリースを支える負荷試験 / SRE Kaigi 2026
genda
4
1.4k
コミュニティが変えるキャリアの地平線:コロナ禍新卒入社のエンジニアがAWSコミュニティで見つけた成長の羅針盤
kentosuzuki
0
130
10Xにおける品質保証活動の全体像と改善 #no_more_wait_for_test
nihonbuson
PRO
2
340
Featured
See All Featured
More Than Pixels: Becoming A User Experience Designer
marktimemedia
3
330
Design in an AI World
tapps
0
150
The Illustrated Guide to Node.js - THAT Conference 2024
reverentgeek
0
260
RailsConf & Balkan Ruby 2019: The Past, Present, and Future of Rails at GitHub
eileencodes
141
34k
Writing Fast Ruby
sferik
630
62k
From π to Pie charts
rasagy
0
130
Statistics for Hackers
jakevdp
799
230k
Money Talks: Using Revenue to Get Sh*t Done
nikkihalliwell
0
160
Responsive Adventures: Dirty Tricks From The Dark Corners of Front-End
smashingmag
254
22k
Practical Orchestrator
shlominoach
191
11k
DBのスキルで生き残る技術 - AI時代におけるテーブル設計の勘所
soudai
PRO
62
50k
How to Create Impact in a Changing Tech Landscape [PerfNow 2023]
tammyeverts
55
3.3k
Transcript
Copyright © GREE, Inc. All Rights Reserved. ϒϥοΫϘοΫε࠷దԽͱͦͷԠ༻ ඌ࡚ Յ
Copyright © GREE, Inc. All Rights Reserved. ॴଐ • άϦʔגࣜձࣾ
AIϦαʔννʔϜ ΤϯδχΞ • ࢈ۀٕज़૯߹ݚڀॴ ਓೳݚڀηϯλʔ ಛఆूதݚڀઐһʢ݉ʣ ݚڀ • ඍϑϦʔ࠷దԽɾϒϥοΫϘοΫε࠷దԽ • Automated Machine Learning (AutoML) ඌ࡚ Յ https://y0z.github.io/about/
Copyright © GREE, Inc. All Rights Reserved. • ԿΒ͔ͷతؔΛಛఆ੍ԼͰ࠷খԽʢͳ͍͠࠷େԽʣ͢Δ
! • Ұൠʹ! ʹؔͯ͠ಘΒΕΔใɼ͓͚ΔԾఆ͕ଟ͍΄Ͳޮతʹղ͚Δ • Ұ࣍ͷޯใɼೋ࣍ͷޯใ • ತੑɼϦϓγοπ࿈ଓੑɼྼϞδϡϥੑ Minimize f(x) subject to x ∈ X f(x) ཧ࠷దԽ
Copyright © GREE, Inc. All Rights Reserved. • ήʔϜͷόϥϯεΛࠨӈ͢Δύϥϝʔλͷࣗಈௐ •
ԿΒ͔ͷείΞ! (ྫ͑ɼউ)ήʔϜγϛϡϨʔλΛಈ࡞ͤ͞Δ ͜ͱͰಘΒΕΔ͕ɼ! ͷৄࡉखʹෛ͑ͳ͍΄Ͳෳࡶ • ػցֶशϞσϧͷϋΠύύϥϝʔλ࠷దԽ • AutoMLͷத৺త՝ͷ1ͭ (Feurer and Hutter, 2019) • Ϟσϧੑೳ! ͕࠷ྑͱͳΔϋΠύύϥϝʔλ! ͷ୳ࡧʢؔඇࣗ໌ʣ f(x) f(x) f(x) x ݱʹ”ϒϥοΫϘοΫε”͕ؔଟ
Copyright © GREE, Inc. All Rights Reserved. • యܕతͳઃఆ •
తؔ! ͷΈ͕؍ଌՄೳ • ݪଇͱͯ͠ޯใؔͷੑ࣭ͳͲΛར༻Ͱ͖ͳ͍ • ؔධՁίετ͕ߴ͍ʢήʔϜγϛϡϨʔγϣϯϞσϧͷֶशʣ • తؔΛධՁͰ͖ΔճʹݶΓ͕͋Δ • ؍ଌϊΠζΛ͏ʢήʔϜͷ݁Ռֶशͷ݁Ռʹཚ͕Өڹʣ • ͏গ͠ϦονͳઃఆΛάϨΠϘοΫε࠷దԽͱݺͿ͜ͱ͕͋Δ • ϚϧνϑΟσϦςΟ࠷దԽ • ࢀߟɿGrey-box Bayesian Optimization for AutoML https://slideslive.com/38916582/keynote-greybox-bayesian- optimization-for-automl f(x) ϒϥοΫϘοΫε࠷దԽ
Copyright © GREE, Inc. All Rights Reserved. • ϕΠζ࠷దԽɾόϯσΟοτΞϧΰϦζϜ ػցֶशܥݚڀऀΒ͕ΜʹݚڀɼGP-EIɼSMACɼTPEͳͲ
• ਐԽܭࢉ Population-based methodsͱɼCMA-ESͳͲ • ୳ࡧ๏ Nelder–Mead๏ɼMADSͳͲ • اۀϒϥοΫϘοΫε࠷దԽιϑτΣΞ։ൃʹਚྗ • Google Vizier (Google) • Optuna (PFN) • Nevergrad (Facebook) ϒϥοΫϘοΫε࠷దԽख๏
Copyright © GREE, Inc. All Rights Reserved. • ϕΠζ࠷దԽɾόϯσΟοτΞϧΰϦζϜ ػցֶशܥݚڀऀΒ͕ΜʹݚڀɼGP-EIɼSMACɼTPEͳͲ
• ਐԽܭࢉ Population-based methodsͱɼCMA-ESͳͲ • ୳ࡧ๏ Nelder–Mead๏ɼMADSͳͲ • اۀϒϥοΫϘοΫε࠷దԽιϑτΣΞ։ൃʹਚྗ • Google Vizier (Google) • Optuna (PFN) • Nevergrad (Facebook) ϒϥοΫϘοΫε࠷దԽख๏
Copyright © GREE, Inc. All Rights Reserved. • ؔධՁͱ୯ମͷมܗΛ܁Γฦ͢ඍϑϦʔہॴ୳ࡧώϡʔϦεςΟοΫ •
ϋΠύύϥϝʔλ࠷దԽΛؚΉɼ࣮༻্ͷଟ͘ͷͰ্ख͘ಇ͘ (Cohen et al., 2005; Ozaki et al., 2017) Nelder–Mead๏ Nelder and Mead, 1965 CNNͷϋΠύύϥϝʔλ࠷దԽ (Ozaki et al., 2017)
Copyright © GREE, Inc. All Rights Reserved. Nelder–Mead๏ reflect, expand,
inside contract, outside contract, shrinkͷ5छྨͷૢ࡞Λ෮తʹద༻ reflect, expand, inside contract, outside contract shrink
Copyright © GREE, Inc. All Rights Reserved. • Nelder–Mead๏ͷ୳ࡧ֤ͷධՁʹج͖ͮஞ࣍తʹܾ·ΔͨΊɼ ͜ͷख๏ฒྻԽʹෆ͖Ͱ͋Γɼ࣮༻্େ͖ͳ՝
• తؔͷαϩήʔτ্ͰɼNelder–Mead๏Λ࣮ߦ͢ΔϞϯςΧϧϩ๏ʹ ΑΓɼධՁ͞ΕΔݟࠐΈͷߴ͍Λ༧ଌ͠ɼػతʹධՁ ༧ଌʹجͮ͘ฒྻධՁʹΑΔNelder–Mead๏ͷߴԽ Accelerating the Nelder–Mead Method with Predictive Parallel Evaluation Yoshihiko Ozaki, Shuhei Watanabe, and Masaki Onishi 6th ICML Workshop on Automated Machine Learning, Jun 2019. ! ΛԾఆ͠ɼ! Ψεաఔ͔ΒͷαϯϓϧΛද͢ f(x) ∼ GP(m(x), k(x, x′)) g(x)
Copyright © GREE, Inc. All Rights Reserved. 1.ॳظ୯ମʹؚ·ΕΔΛฒྻධՁ 2.ະධՁʹ౸ୡ͢Δ·Ͱɼଓ͖͔ΒNelder–Mead๏Λ࣮ߦ 3.ϞϯςΧϧϩ๏Λ࣮ߦ͠ɼػతʹධՁ͢ΔPݸͷީิΛٻΊɼฒྻධՁ
4.࠷దԽͷఀࢭ݅Λຬ͍ͨͯ͠Ε݁ՌΛฦ͠ɼͦ͏Ͱͳ͚Ε2.ʹΔ ༧ଌʹجͮ͘ฒྻධՁʹΑΔNelder–Mead๏ͷߴԽ ఏҊख๏ ! ΛԾఆ͠ɼ! Ψεաఔ͔ΒͷαϯϓϧΛද͢ f(x) ∼ GP(m(x), k(x, x′)) g(x)
Copyright © GREE, Inc. All Rights Reserved. •࣮ݧઃఆ • 6छྨͷϋΠύύϥϝʔλΛ࠷దԽ͢ΔϕϯνϚʔΫ
(Klein et al., 2018) • ฒྻ! Ͱݻఆ͠ɼઌಡΈΠςϨʔγϣϯ! Ͱ࣮ݧ • Baseline 1ɼॳظԽͱshrinkૢ࡞ͷΈฒྻධՁ (ࣗ໌ͳฒྻԽ) • Baseline 2ɼ࣍ΠςϨʔγϣϯͰධՁ͞ΕಘΔશͯͷΛฒྻධՁ •݁Ռ • Baseline 1ʹൺ49%ߴԽɼ2ʹൺ13%ߴԽ͔ͭগͳ͍ධՁ P = 10 J = 1,2,3,4,5 ༧ଌʹجͮ͘ฒྻධՁʹΑΔNelder–Mead๏ͷߴԽ ܭࢉ࣮ݧ Method J Average # of eval steps Average # of evaluations Baseline 1 - 590.27 (±141.42) 614.10 (±142.82) Baseline 2 - 347.27 (±89.32) 3469.67 (±893.21) Proposed 1 406.20 (±97.24) 1534.20 (±427.69) 2 314.13 (±72.26) 2307.83 (±558.02) 3 304.97 (±54.57) 2679.13 (±464.80) 4 310.60 (±67.58) 2948.20 (±642.62) 5 301.90 (±58.70) 2942.33 (±567.27)
Copyright © GREE, Inc. All Rights Reserved. • ฒྻ! ɼઌಡΈΠςϨʔγϣϯ!
Λ࣮ݧ • ߴԽͷޮՌ͋Δఔͷ! ·Ͱεέʔϧ͢Δ͕ɼͦΕҎ্མͪண͘ ʢઌͷΠςϨʔγϣϯʹͳΔ΄ͲɼධՁ͞ΕΔͷ༧ଌ͘͠ͳΔʣ P = 10,20,30,40 J = 1,2,3,4,5 P, J ༧ଌʹجͮ͘ฒྻධՁʹΑΔNelder–Mead๏ͷߴԽ ܭࢉ࣮ݧ
Copyright © GREE, Inc. All Rights Reserved. • ϒϥοΫϘοΫε࠷దԽۃΊͯ༗༻ •
ϋΠύύϥϝʔλ࠷దԽɼήʔϜͷύϥϝʔλࣗಈௐͳͲԠ༻ଟ • ٳܜ࣌ؒʹσΟεΧογϣϯܴ • 8݄5ͷKDD AutoML Workshopʹͯ࠷৽ͷݚڀʹ͍ͭͯൃද༧ఆ • Yoshihiko Ozaki and Masaki Onishi, “Practical Deep Neural Network Performance Prediction for Hyperparameter Optimization,” To appear. • https://sites.google.com/view/automl2019-workshop/ ·ͱΊ
Copyright © GREE, Inc. All Rights Reserved.