Upgrade to PRO for Only $50/Year—Limited-Time Offer! 🔥
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
新卒1年目の挑戦〜LangChainとChatGPTを活用したメディア記事執筆の補助ツール〜
Search
gree_tech
PRO
October 12, 2023
Technology
0
850
新卒1年目の挑戦〜LangChainとChatGPTを活用したメディア記事執筆の補助ツール〜
GREE Tech Conference 2023で発表された資料です。
https://techcon.gree.jp/2023/session/TrackA-8
gree_tech
PRO
October 12, 2023
Tweet
Share
More Decks by gree_tech
See All by gree_tech
REALITY株式会社における開発生産性向上の取り組み: 失敗と成功から学んだこと
gree_tech
PRO
2
170
『ヘブンバーンズレッド』におけるフィールドギミックの裏側
gree_tech
PRO
2
120
セキュリティインシデント対応の体制・運用の試行錯誤 / greetechcon2024-session-a1
gree_tech
PRO
1
130
『アナザーエデン 時空を超える猫』国内海外同時運営実現への道のり ~別々で開発されたアプリを安定して同時リリースするまでの取り組み~
gree_tech
PRO
1
100
『アサルトリリィ Last Bullet』におけるクラウドストリーミング技術を用いたブラウザゲーム化の紹介
gree_tech
PRO
1
130
UnityによるPCアプリの新しい選択肢。「PC版 Google Play Games」への対応について
gree_tech
PRO
1
160
実機ビルドのエラーによる検証ブロッカーを0に!『ヘブンバーンズレッド』のスモークテスト自動化の取り組み
gree_tech
PRO
1
150
"ゲームQA業界の技術向上を目指す! 会社を超えた研究会の取り組み"
gree_tech
PRO
1
180
Jamstack でリニューアルするグリーグループのメディア
gree_tech
PRO
2
350
Other Decks in Technology
See All in Technology
Nihonbashi Test Talk #3_WebDriver BiDiと最新の実装状況 / WebDriver BiDi latest status
takeyaqa
1
130
LY Accessibility Guidelines @fukuoka_a11yconf_前夜祭
lycorptech_jp
PRO
1
140
開志専門職大学特別講義 2024 デモパート
1ftseabass
PRO
0
210
振る舞い駆動開発(BDD)における、テスト自動化の前に大切にしていること #stac2024 / BDD formulation
nihonbuson
2
280
Atelier BlueHats : Migration de l’application COBOL MedocDB de GCOS à GnuCOBOL sur GNU/Linux
bluehats
0
110
B11-SharePoint サイトのストレージ管理を考えよう
maekawa123
0
130
[GDG DevFest Bangkok 2024] - The Future of Retail E-commerce with Gemini AI
punsiriboo
0
290
まだチケットを手動で書いてるの?!GitHub Actionsと生成AIでチケットの作成を自動化してみた話 / 20241207 Yoshinori Katayama
shift_evolve
1
280
[DevFestTokyo]Accelerating Flutter App Development Using Generative AI
korodroid
1
250
多様なロール経験が導いたエンジニアキャリアのナビゲーション
coconala_engineer
1
110
MediaPipe と ML Kit ってどう ちがうの? / What is the difference between MediaPipe and ML Kit?
yanzm
0
430
クラウドネイティブへの小さな一歩!既存VMからコンテナまで、KubeVirtが実現する『無理しないペースの移行』とは!?
tsukaman
0
110
Featured
See All Featured
YesSQL, Process and Tooling at Scale
rocio
169
14k
[RailsConf 2023 Opening Keynote] The Magic of Rails
eileencodes
28
9.1k
Dealing with People You Can't Stand - Big Design 2015
cassininazir
365
24k
What's in a price? How to price your products and services
michaelherold
243
12k
What’s in a name? Adding method to the madness
productmarketing
PRO
22
3.2k
Design and Strategy: How to Deal with People Who Don’t "Get" Design
morganepeng
126
18k
Improving Core Web Vitals using Speculation Rules API
sergeychernyshev
0
8
Being A Developer After 40
akosma
87
590k
Practical Tips for Bootstrapping Information Extraction Pipelines
honnibal
PRO
10
770
Code Reviewing Like a Champion
maltzj
520
39k
The MySQL Ecosystem @ GitHub 2015
samlambert
250
12k
Music & Morning Musume
bryan
46
6.2k
Transcript
新卒1年目の挑戦 〜LangChainとChatGPTを活用したメ ディア記事執筆の補助ツール〜 Glossom株式会社 データアナリスト 中嶋桃香
目次 • 本取り組みの概要 • システム構成〜LangChainとChatGPTについて〜 • 実際の使用例と効果 • 今後の展望 2
自己紹介 • 名前:中嶋桃香 • 所属:Glossom株式会社 DXコンサルティング事業本部 • 担当:データアナリスト 2023年度入社 1年目 3
目次 • 本取り組みの概要 • システム構成〜LangChainとChatGPTについて〜 • 実際の使用例と効果 • 今後の展望 4
本取り組みの概要 Glossomは、グリーグループのDX事業を担い、クライアントのデジタルマーケティングを支援しています。 5
ChatGPTを活用した業務効率化を目指すGlossomのチーム横断プロジェクト 本取り組みの概要 6 Glossom 株式会社 DXコンサルティング事業本部 データ エンジニアリング データ マーケティング
メディアグロース アカウント コンサルティング 🦜 🔗 ・クライアントのデータ分析支援 ・新規サービス立ち上げ支援 ・メディア運用 ・Webマネタイズ ・データ分析基盤の構築 ・技術選定 ・新規案件獲得 ・各案件のマネジメント
本取り組みの概要 GPT-4やBERTといったLLM(大規模言語モデル)が開発される 社内DXの一環として、業務効率化のためにLLMを活用できないか ChatGPTを使って工数のかかる作業を一部自動化できないか メディアグロースチームが行う記事執筆作業とLLMの相性が良さそう 記事執筆作業を一部自動化するツールの開発に挑戦しよう! 7
目次 • 本取り組みの概要 • システム構成〜LangChainとChatGPTについて〜 • 実際の使用例と効果 • 今後の展望 8
従来の記事執筆フロー • 先行プレイ/リリース初期のゲームについて記事を書くことがある • 記事を短期間で書き上げなくてはいけない 9 ゲームの情報を収集 テキストにまとめる ゲームをプレイする ゲームの情報を
記事の雛形に沿って 整理する 記事作成 レビューを経て公開 工数がかかる作業になる ChatGPTを使って 記事の雛形に合わせて 情報を整理できないか?
ChatGPTについて • ChatGPT ◦ OpenAIによって開発された対話型のチャットアプリケーション ◦ 言語モデルに基づいて応答を生成するように訓練されている ◦ GPT-4では2022年8月までの情報が元になっていて、多数のプラグインが開発されている ◦
APIはToken数による従量課金システム ▪ 英語1単語で1トークン、ひらがな1文字で1トークンでカウントされることが多い 10 Models Max Tokens Input Output GPT-4 8,192 tokens $0.03 / 1K tokens $0.06 / 1K tokens GPT-4-32k 32,768 tokens $0.06 / 1K tokens $0.12 / 1K tokens GPT-3.5-turbo 4,097 tokens $0.0015 / 1K tokens $0.002 / 1K tokens GPT-3.5-turbo-16k 16,385 tokens $0.003 / 1K tokens $0.004 / 1K tokens 2023/09/15時点でのデータ
プロトタイプ〜システム構成〜 • 2023年8月頃の技術選定 • GPTモデルを活用するには入出力のトークン数に制限がある • 最新のゲーム情報は GPTに学習されていない 11 prompt
記事の 土台 URL テキスト データ ゲーム情報収集 ゲーム情報まとめ 記事作成 テキスト Webスクレイピングにより 取得したゲーム情報 事前に収集してあった ゲームに関するテキスト情報 ゲームを実際にプレイした感想 記事公開 Token数の制限を 超える恐れがある 最新のゲーム情報は GPTに学習されてない 目検チェック・レビュー • 記事を公開用に修正 • 誤情報を含んでいないか • 不適切な表現がないか
LangChainについて 大規模言語モデル(LLM)を拡張するためのフレームワーク • 主な機能 ◦ Chain ◦ Summarization ◦ Memory
◦ Agents ◦ Prompts ◦ Data Connection ◦ Models 12
LangChainのここがすごい! • Models 様々なモデルを選択して使用できるモジュール • LLM • Chatモデル • Embeddingsモデル
→各ライブラリごとに異なる記法を書き分ける必要が ない →本実装ではGPT-3.5-turbo-16kを使用 • Chain プロンプトの出力結果をもとに次のプロンプトを実行で きるモジュール →精度向上のためのCoTプロンプトの実行が可能 Input 中間推論 Output 13
LangChainのここがすごい! • Data Connection 言語モデルに対して外部データを追加して、回答を生成できるモジュール • Document Loaders • Text
Splitters • Embeddings • Vector Stores • Retrievers Glossomの会社紹介です。 グリーグループDX事業部として、 マーケティング機能を網羅しており ます。 Glossomは、それぞれの取組結果 をデータ化して一気通貫で可視化し ます。 [Glossomの会社紹介です], [グリーグループDX事業部として、 マーケティング機能を網羅してお ります], [Glossomは、それぞれの取組結 果をデータ化して一気通貫で可視 化します], . 【Document Loaders】 様々な形式のデータが読める ex:ドキュメント/HTML/Webサイト 【Text Splitters】 意味のあるチャンクに分割 チャンクの分割方法は様々に指定可能 14
LangChainのここがすごい! • Summarization 長いドキュメントを要約する方法: load_summarize_chain(chain_type=’’) 処理の分散方式が様々あり、今回は処理速度の観点から map_reduceを採用 • stuff ◦
チャンクごとに分割された文章を 1つにまとめてプロンプトに渡す • map_reduce ◦ 分割された文章ごと単独のプロンプトを作成して並列処理を行う ◦ 返ってきた複数の結果を結合してプロンプトに渡して再度実行する処理が行われるため処理が早 い。 • refine ◦ 分割された文章を順番に単独のプロンプトに渡す ◦ 帰ってきた結果を次の文章の入力に使用するため情報の欠落が少ないが、順番に単独で処理す るため処理が遅い。 15
実際のシステム構成 Google Colaboratory上で実装 →GUIでの簡単な操作、環境構築も要らないことから、個人のコーディングスキルによらず、全ての人がすぐに使えます。 16 prompt 記事の 土台 URL text
docx Summarization map_reduce Data Connection ゲーム情報収集 ゲーム情報まとめ 記事作成 models 1. 言語モデルの選択 2. ゲーム情報がまとめられたテキストの整理 3. GPT3.5-turbo-16kのToken数制限に収まるようにテキストを要約 4. 整理されたテキストをプロンプトに渡して記事の土台を作成する
目次 • 本取り組みの概要 • システム構成〜LangChainとChatGPTについて〜 • 実際の使用例と効果 • 今後の展望 17
実際の使用例と効果 従来の記事執筆フロー:60-90分/ライター1人+レビュー ツール導入後:30分+レビュー 18 【Colabの操作】 全ての処理を実行するだけ 処理は5分程度で終了 【雛形に沿って出力】 あなたは(〇〇)にを紹介する記事を書くラ イターになりきってください。
次のゲームに関する記事を日本語で簡潔 に要約して、新しい記事を書いてください。 記事の構成は以下の通りとします。 画像とダウンロードボタンはテキストのまま で大丈夫です。 ====== タイトル(h1) --- サブタイトル( h2) 画像 テキスト ダウンロードボタン --- 【生データ】 スマホ向け新作 RPG「〇〇」サー ビス開始! リリース直後から無料 DL数ラン キングで連日 1位をキープ 本作では、〇〇がオリジナルの ストーリーで登場。プレイヤーは △△を発見することができます。 サービス開始を記念して、スー パーレアアイテムの〜〜を一斉 にプレゼント エリア探索が楽しくて、時間を忘 れてしまう ※これはダミーデータです
目次 • 本取り組みの概要 • システム構成〜LangChainとChatGPTについて〜 • 実際の使用例と効果 • 今後の展望 19
今後の展望 • ゲーム分野以外での記事執筆補助 ◦ メディアグロースチームが担当する他メディアの記事執筆補助 ◦ 他メディアの記事執筆にも横展開できるように、プロンプトのチューニングを行う • 幅広い技術を活用して業務効率化に取り組む ◦
ゲーム記事の執筆作業に関しては最大限工数を削減できた ◦ 自然言語処理だけでなく画像処理のような技術を使って工数の削減ができるか検討する • マーケティング領域における技術活用を布教する ◦ 生成AIツールを使いこなすための社内勉強会を企画 20
21