Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
新卒1年目の挑戦〜LangChainとChatGPTを活用したメディア記事執筆の補助ツール〜
Search
gree_tech
PRO
October 12, 2023
Technology
0
1.3k
新卒1年目の挑戦〜LangChainとChatGPTを活用したメディア記事執筆の補助ツール〜
GREE Tech Conference 2023で発表された資料です。
https://techcon.gree.jp/2023/session/TrackA-8
gree_tech
PRO
October 12, 2023
Tweet
Share
More Decks by gree_tech
See All by gree_tech
LLM翻訳ツールの開発と海外のお客様対応等への社内導入事例
gree_tech
PRO
0
870
ヘブンバーンズレッドのレンダリングパイプライン刷新
gree_tech
PRO
0
890
ヘブンバーンズレッドにおける、世界観を活かしたミニゲーム企画の作り方
gree_tech
PRO
0
880
「魔法少女まどか☆マギカ Magia Exedra」のグローバル展開を支える、開発チームと翻訳チームの「意識しない協創」を実現するローカライズシステム
gree_tech
PRO
0
870
「魔法少女まどか☆マギカ Magia Exedra」での負荷試験の実践と学び
gree_tech
PRO
0
950
「魔法少女まどか☆マギカ Magia Exedra」の必殺技演出を徹底解剖! -キャラクターの魅力を最大限にファンに届けるためのこだわり-
gree_tech
PRO
0
880
ヒューリスティック評価を用いたゲームQA実践事例
gree_tech
PRO
0
870
ライブサービスゲームQAのパフォーマンス検証による品質改善の取り組み
gree_tech
PRO
0
870
コミュニケーションに鍵を見いだす、エンジニア1年目の経験談
gree_tech
PRO
0
150
Other Decks in Technology
See All in Technology
AWS 잘하는 개발자 되기 - AWS 시작하기: 클라우드 개념부터 IAM까지
kimjaewook
0
120
生成AIとM5Stack / M5 Japan Tour 2025 Autumn 東京
you
PRO
0
240
成長自己責任時代のあるきかた/How to navigate the era of personal responsibility for growth
kwappa
4
300
定期的な価値提供だけじゃない、スクラムが導くチームの共創化 / 20251004 Naoki Takahashi
shift_evolve
PRO
4
350
カンファレンスに託児サポートがあるということ / Having Childcare Support at Conferences
nobu09
1
470
Function calling機能をPLaMo2に実装するには / PFN LLMセミナー
pfn
PRO
0
1k
Access-what? why and how, A11Y for All - Nordic.js 2025
gdomiciano
1
120
「Verify with Wallet API」を アプリに導入するために
hinakko
1
260
職種別ミートアップで社内から盛り上げる アウトプット文化の醸成と関係強化/ #DevRelKaigi
nishiuma
2
160
リーダーになったら未来を語れるようになろう/Speak the Future
sanogemaru
0
360
社内お問い合わせBotの仕組みと学び
nish01
1
520
PLaMo2シリーズのvLLM実装 / PFN LLM セミナー
pfn
PRO
2
1.1k
Featured
See All Featured
Save Time (by Creating Custom Rails Generators)
garrettdimon
PRO
32
1.6k
Raft: Consensus for Rubyists
vanstee
139
7.1k
Docker and Python
trallard
46
3.6k
Side Projects
sachag
455
43k
Visualizing Your Data: Incorporating Mongo into Loggly Infrastructure
mongodb
48
9.7k
実際に使うSQLの書き方 徹底解説 / pgcon21j-tutorial
soudai
PRO
189
55k
Templates, Plugins, & Blocks: Oh My! Creating the theme that thinks of everything
marktimemedia
31
2.5k
Fashionably flexible responsive web design (full day workshop)
malarkey
407
66k
Visualization
eitanlees
148
16k
Scaling GitHub
holman
463
140k
StorybookのUI Testing Handbookを読んだ
zakiyama
31
6.2k
Rebuilding a faster, lazier Slack
samanthasiow
84
9.2k
Transcript
新卒1年目の挑戦 〜LangChainとChatGPTを活用したメ ディア記事執筆の補助ツール〜 Glossom株式会社 データアナリスト 中嶋桃香
目次 • 本取り組みの概要 • システム構成〜LangChainとChatGPTについて〜 • 実際の使用例と効果 • 今後の展望 2
自己紹介 • 名前:中嶋桃香 • 所属:Glossom株式会社 DXコンサルティング事業本部 • 担当:データアナリスト 2023年度入社 1年目 3
目次 • 本取り組みの概要 • システム構成〜LangChainとChatGPTについて〜 • 実際の使用例と効果 • 今後の展望 4
本取り組みの概要 Glossomは、グリーグループのDX事業を担い、クライアントのデジタルマーケティングを支援しています。 5
ChatGPTを活用した業務効率化を目指すGlossomのチーム横断プロジェクト 本取り組みの概要 6 Glossom 株式会社 DXコンサルティング事業本部 データ エンジニアリング データ マーケティング
メディアグロース アカウント コンサルティング 🦜 🔗 ・クライアントのデータ分析支援 ・新規サービス立ち上げ支援 ・メディア運用 ・Webマネタイズ ・データ分析基盤の構築 ・技術選定 ・新規案件獲得 ・各案件のマネジメント
本取り組みの概要 GPT-4やBERTといったLLM(大規模言語モデル)が開発される 社内DXの一環として、業務効率化のためにLLMを活用できないか ChatGPTを使って工数のかかる作業を一部自動化できないか メディアグロースチームが行う記事執筆作業とLLMの相性が良さそう 記事執筆作業を一部自動化するツールの開発に挑戦しよう! 7
目次 • 本取り組みの概要 • システム構成〜LangChainとChatGPTについて〜 • 実際の使用例と効果 • 今後の展望 8
従来の記事執筆フロー • 先行プレイ/リリース初期のゲームについて記事を書くことがある • 記事を短期間で書き上げなくてはいけない 9 ゲームの情報を収集 テキストにまとめる ゲームをプレイする ゲームの情報を
記事の雛形に沿って 整理する 記事作成 レビューを経て公開 工数がかかる作業になる ChatGPTを使って 記事の雛形に合わせて 情報を整理できないか?
ChatGPTについて • ChatGPT ◦ OpenAIによって開発された対話型のチャットアプリケーション ◦ 言語モデルに基づいて応答を生成するように訓練されている ◦ GPT-4では2022年8月までの情報が元になっていて、多数のプラグインが開発されている ◦
APIはToken数による従量課金システム ▪ 英語1単語で1トークン、ひらがな1文字で1トークンでカウントされることが多い 10 Models Max Tokens Input Output GPT-4 8,192 tokens $0.03 / 1K tokens $0.06 / 1K tokens GPT-4-32k 32,768 tokens $0.06 / 1K tokens $0.12 / 1K tokens GPT-3.5-turbo 4,097 tokens $0.0015 / 1K tokens $0.002 / 1K tokens GPT-3.5-turbo-16k 16,385 tokens $0.003 / 1K tokens $0.004 / 1K tokens 2023/09/15時点でのデータ
プロトタイプ〜システム構成〜 • 2023年8月頃の技術選定 • GPTモデルを活用するには入出力のトークン数に制限がある • 最新のゲーム情報は GPTに学習されていない 11 prompt
記事の 土台 URL テキスト データ ゲーム情報収集 ゲーム情報まとめ 記事作成 テキスト Webスクレイピングにより 取得したゲーム情報 事前に収集してあった ゲームに関するテキスト情報 ゲームを実際にプレイした感想 記事公開 Token数の制限を 超える恐れがある 最新のゲーム情報は GPTに学習されてない 目検チェック・レビュー • 記事を公開用に修正 • 誤情報を含んでいないか • 不適切な表現がないか
LangChainについて 大規模言語モデル(LLM)を拡張するためのフレームワーク • 主な機能 ◦ Chain ◦ Summarization ◦ Memory
◦ Agents ◦ Prompts ◦ Data Connection ◦ Models 12
LangChainのここがすごい! • Models 様々なモデルを選択して使用できるモジュール • LLM • Chatモデル • Embeddingsモデル
→各ライブラリごとに異なる記法を書き分ける必要が ない →本実装ではGPT-3.5-turbo-16kを使用 • Chain プロンプトの出力結果をもとに次のプロンプトを実行で きるモジュール →精度向上のためのCoTプロンプトの実行が可能 Input 中間推論 Output 13
LangChainのここがすごい! • Data Connection 言語モデルに対して外部データを追加して、回答を生成できるモジュール • Document Loaders • Text
Splitters • Embeddings • Vector Stores • Retrievers Glossomの会社紹介です。 グリーグループDX事業部として、 マーケティング機能を網羅しており ます。 Glossomは、それぞれの取組結果 をデータ化して一気通貫で可視化し ます。 [Glossomの会社紹介です], [グリーグループDX事業部として、 マーケティング機能を網羅してお ります], [Glossomは、それぞれの取組結 果をデータ化して一気通貫で可視 化します], . 【Document Loaders】 様々な形式のデータが読める ex:ドキュメント/HTML/Webサイト 【Text Splitters】 意味のあるチャンクに分割 チャンクの分割方法は様々に指定可能 14
LangChainのここがすごい! • Summarization 長いドキュメントを要約する方法: load_summarize_chain(chain_type=’’) 処理の分散方式が様々あり、今回は処理速度の観点から map_reduceを採用 • stuff ◦
チャンクごとに分割された文章を 1つにまとめてプロンプトに渡す • map_reduce ◦ 分割された文章ごと単独のプロンプトを作成して並列処理を行う ◦ 返ってきた複数の結果を結合してプロンプトに渡して再度実行する処理が行われるため処理が早 い。 • refine ◦ 分割された文章を順番に単独のプロンプトに渡す ◦ 帰ってきた結果を次の文章の入力に使用するため情報の欠落が少ないが、順番に単独で処理す るため処理が遅い。 15
実際のシステム構成 Google Colaboratory上で実装 →GUIでの簡単な操作、環境構築も要らないことから、個人のコーディングスキルによらず、全ての人がすぐに使えます。 16 prompt 記事の 土台 URL text
docx Summarization map_reduce Data Connection ゲーム情報収集 ゲーム情報まとめ 記事作成 models 1. 言語モデルの選択 2. ゲーム情報がまとめられたテキストの整理 3. GPT3.5-turbo-16kのToken数制限に収まるようにテキストを要約 4. 整理されたテキストをプロンプトに渡して記事の土台を作成する
目次 • 本取り組みの概要 • システム構成〜LangChainとChatGPTについて〜 • 実際の使用例と効果 • 今後の展望 17
実際の使用例と効果 従来の記事執筆フロー:60-90分/ライター1人+レビュー ツール導入後:30分+レビュー 18 【Colabの操作】 全ての処理を実行するだけ 処理は5分程度で終了 【雛形に沿って出力】 あなたは(〇〇)にを紹介する記事を書くラ イターになりきってください。
次のゲームに関する記事を日本語で簡潔 に要約して、新しい記事を書いてください。 記事の構成は以下の通りとします。 画像とダウンロードボタンはテキストのまま で大丈夫です。 ====== タイトル(h1) --- サブタイトル( h2) 画像 テキスト ダウンロードボタン --- 【生データ】 スマホ向け新作 RPG「〇〇」サー ビス開始! リリース直後から無料 DL数ラン キングで連日 1位をキープ 本作では、〇〇がオリジナルの ストーリーで登場。プレイヤーは △△を発見することができます。 サービス開始を記念して、スー パーレアアイテムの〜〜を一斉 にプレゼント エリア探索が楽しくて、時間を忘 れてしまう ※これはダミーデータです
目次 • 本取り組みの概要 • システム構成〜LangChainとChatGPTについて〜 • 実際の使用例と効果 • 今後の展望 19
今後の展望 • ゲーム分野以外での記事執筆補助 ◦ メディアグロースチームが担当する他メディアの記事執筆補助 ◦ 他メディアの記事執筆にも横展開できるように、プロンプトのチューニングを行う • 幅広い技術を活用して業務効率化に取り組む ◦
ゲーム記事の執筆作業に関しては最大限工数を削減できた ◦ 自然言語処理だけでなく画像処理のような技術を使って工数の削減ができるか検討する • マーケティング領域における技術活用を布教する ◦ 生成AIツールを使いこなすための社内勉強会を企画 20
21