Lock in $30 Savings on PRO—Offer Ends Soon! ⏳
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
失敗確率を最小化!ユーザーの声からリリース前のネガティブチェックリストを作成
Search
gree_tech
PRO
October 13, 2023
Technology
0
1.4k
失敗確率を最小化!ユーザーの声からリリース前のネガティブチェックリストを作成
GREE Tech Conference 2023で発表された資料です。
https://techcon.gree.jp/2023/session/TrackB-4
gree_tech
PRO
October 13, 2023
Tweet
Share
More Decks by gree_tech
See All by gree_tech
変わるもの、変わらないもの :OSSアーキテクチャで実現する持続可能なシステム
gree_tech
PRO
0
1.3k
マネジメントに役立つ Google Cloud
gree_tech
PRO
0
24
今この時代に技術とどう向き合うべきか
gree_tech
PRO
3
2.3k
生成AIを開発組織にインストールするために: REALITYにおけるガバナンス・技術・文化へのアプローチ
gree_tech
PRO
0
130
安く・手軽に・現場発 既存資産を生かすSlack×AI検索Botの作り方
gree_tech
PRO
0
120
生成AIを安心して活用するために──「情報セキュリティガイドライン」策定とポイント
gree_tech
PRO
1
680
あうもんと学ぶGenAIOps
gree_tech
PRO
0
210
MVP開発における生成AIの活用と導入事例
gree_tech
PRO
0
230
機械学習・生成AIが拓く事業価値創出の最前線
gree_tech
PRO
0
170
Other Decks in Technology
See All in Technology
確実に伝えるHealth通知 〜半自動システムでほどよく漏れなく / JAWS-UG 神戸 #9 神戸へようこそ!LT会
genda
0
160
type-challenges を全問解いたのでエッセンスと推し問題を紹介してみる
kworkdev
PRO
0
140
"なるべくスケジューリングしない" を実現する "PreferNoSchedule" taint
superbrothers
0
120
Symfony AI in Action
el_stoffel
2
250
Kill the Vibe?Architecture in the age of AI
stoth
1
130
useEffectってなんで非推奨みたいなこと言われてるの?
maguroalternative
6
2.8k
信頼性が求められる業務のAIAgentのアーキテクチャ設計の勘所と課題
miyatakoji
0
190
pmconf 2025 大阪「生成AI時代に未来を切り開くためのプロダクト戦略:圧倒的生産性を実現するためのプロダクトサイクロン」 / The Product Cyclone for Outstanding Productivity
yamamuteki
3
3k
組織の“見えない壁”を越えよ!エンタープライズシフトに必須な3つのPMの「在り方」変革 #pmconf2025
masakazu178
1
1.1k
2025 DORA Reportから読み解く!AIが映し出す、成果を出し続ける組織の共通点 #開発生産性_findy
takabow
2
760
LangChain v1.0にトライ~ AIエージェントアプリの移行(v0.3 → v1.0) ~
happysamurai294
0
120
MAP-7thplaceSolution
yukichi0403
2
210
Featured
See All Featured
Balancing Empowerment & Direction
lara
5
770
Practical Tips for Bootstrapping Information Extraction Pipelines
honnibal
25
1.6k
Building a Modern Day E-commerce SEO Strategy
aleyda
45
8.1k
Creating an realtime collaboration tool: Agile Flush - .NET Oxford
marcduiker
34
2.3k
Large-scale JavaScript Application Architecture
addyosmani
514
110k
Reflections from 52 weeks, 52 projects
jeffersonlam
355
21k
How to train your dragon (web standard)
notwaldorf
97
6.4k
Facilitating Awesome Meetings
lara
57
6.6k
JavaScript: Past, Present, and Future - NDC Porto 2020
reverentgeek
52
5.7k
Fantastic passwords and where to find them - at NoRuKo
philnash
52
3.5k
How STYLIGHT went responsive
nonsquared
100
5.9k
A Tale of Four Properties
chriscoyier
162
23k
Transcript
リリース時の失敗確率を最小化! ユーザーの声から ネガティブチェックリストを作成 株式会社ExPlay QAエンジニア 山本 幸寛
登壇者紹介 山本 幸寛(やまもと ゆきひろ) 株式会社ExPlay Customer & Product Satisfaction部 WFQAチーム 名と所属 氏名と所
2 氏名と所属 略歴 家庭用ゲームやモバイルゲームの QA業務を経験後、2021年グリー株式会社に入社 入社後はライトフライヤースタジオタイトルの QAを担当するチームに所属し 長期運用タイトルのQA業務を担当 合わせて上流工程からより品質を高めるためユーザーテストに関連する対応も担当
はじめに • グリーでは研究会という形で、複数社合同でQA技術の研究を行っている • 本発表はその研究会で研究したテーマの一つ • 本テーマの研究メンバーは下記4名※敬称略 ◦ 株式会社 ProVision
▪ 出口 健太(でぐち けんた) ◦ グリー株式会社 ▪ 仁禮 景太(にれ けいた) ◦ 株式会社ExPlay ▪ 神谷 勇毅(こうや ゆうき) ▪ 山本 幸寛(やまもと ゆきひろ) 3
本日の流れ • 背景と方針 • ネガティブチェックリストについて • 導入方法想定 • 調査を実施しての所感 •
今後の展開 4
研究の背景 • グリーでは成功確度を高めるため「ユーザー視点で面白さやUI/UXの改善点を フィードバックするユーザーテスト」を実施しているが課題がある 5 『有益性の可視化』と『実行の汎用化』を目指す ◦ 有益性が見えない ▪ 改善結果が売上や継続率に直結しているか判断しづらい
◦ 属人化する ▪ バランス設計などのUX観点でフィードバックを行う際、テスト実行者頼り になってしまう
研究の方針 • 既存のユーザーテストの枠組みを壊し「面白さ」へのアプローチはしない ◦ 有益性の提示が困難 ▪ 参考:サラダマックの大失敗 ▪ ユーザーが「こうした方が良い」と言うものと、実際に面白いと感じるもの は異なる
▪ 面白さに関してヒアリングしてもそのままでは参考に出来なさそう ◦ 汎用性を持たせることが困難 ▪ 「より面白いものにするにはどうすれば良いか?」に対するアプローチは クリエイティブ要素が強い 6
研究の方向性 • ネガティブフィードバックにフォーカスする ◦ 「面白くない・気持ちよくない・使いづらい」というネガティブに感じるポイントは、 タイトル・ユーザー横断で共通していそう ◦ 過去のタイトルから以下をリスト化することで、定量的な根拠を提示できそう ▪ こういった仕様・実装になっていたらイケてない
▪ なぜなら過去同様の仕様・実装でリリースしたら「面白くない・気持ちよくな い・使いづらい」という声がこれだけあったから 7 「どうすれば良くなるのかは分からないが、少なくとも現状が望ましい状態から 乖離しているよ」ということを客観的にフィードバックすることはできそう
ネガティブチェックリストについて 8
チェックリスト作成方法 9 タイトル 選定 • 直近2年以内にリリースされたタイトルを選定 • リリースから3か月のCS問い合わせから、ネガティブフィードバックにあたる意見・要望を抽 出 ◦
問い合わせ総数:4170件 ◦ うち意見・要望と見られるもの: 470件 ユーザーの 意見・ 要望を収集 リスト化 • 抽出した生の定性データを以下 2段階で加工してカテゴライズ ◦ 「端的に言うとどういった内容か?」 ◦ 「本当に求めているものは何か?」 • 該当観点に紐づく意見・要望の数が多い順=優先度としてチェックリストを作成
カテゴライズの例 10 『同じことを言ってるものをまとめる』 【具体(限定)的】 【抽象(汎用)的】 『同じことを求めているものをまとめる』
ポイント • 同じ意見・要望を「本質的に何を求めているか」の観点で抽象化 ◦ 例:「周回するのがしんどい」という意見に対して… ▪ NGフィードバック例 • 意見を鵜呑みにして周回要素の削除 ◦
結果、遊べるコンテンツが無くなりユーザー離れに繋がる 11
ポイント • 同じ意見・要望を「本質的に何を求めているか」の観点で抽象化 ◦ 例:「周回するのがしんどい」という意見に対して… ▪ 「本質的に何を求めているか」の観点で抽象化 • 育成にかかる時間を短縮する手段が欲しい •
育成の過程をもっと面白くしてほしい 12 ▪ 抽象化した意見を元に用意したチェック観点 • 育成にかかる時間を短縮する手段は設けられているか? • 育成の過程は単純作業ではないか? ▪ 上記チェック観点を利用した場合のフィードバック例 • 育成パックのラインナップ拡張/自動周回機能の追加 • 育成コンテンツ・サイクルの見直し
ユーザーが本当に求めているものリスト • 計26個の『ユーザーが本当に求めているもの』観点リストが完成 • 観点毎の重み(該当観点に紐づくユーザー意見・要望の数)に偏りが存在 <観点リスト例> 13
ネガティブチェックリスト • 『ユーザーが本当に求めているもの』観点リストを元にチェックリスト化 • 説得力を持たせるため意見・要望の数に応じた『優先度』を設定 • ネガティブな感情を生む仕様になっていないかを確認するためOK/NG判定に 14
導入方法想定 15
導入方法想定 • 実施タイミングはαとβの合計2回 ◦ αタイミング ▪ テスト対象 • 仕様書 ▪
狙い • 開発初期のタイミングで実施し、実装の手戻りを抑制 ◦ βタイミング ▪ テスト対象 • 実機挙動 ▪ 狙い • αタイミングと比較し、より具体的なフィードバックを実施 16
効果想定 • 1.有益性の可視化 ◦ 過去事例から観点を生成しているためフィードバックの納得感が向上 • 2.実行の汎用化 ◦ 観点に沿ったフィードバックを行う事で実行者によるバラツキの緩和 •
3.ネガティブな反応の減少 ◦ QAからのフィードバックが反映されユーザーのネガティブな反応が減少 • 4.コスト減少 ◦ QA期間中の仕様変更量が減少し、開発&QAコスト減少と不具合数減少 17
効果想定 • 現状の注意点 ◦ CS問い合わせ調査数が1タイトルとサンプル数が少ない ▪ ユーザーが本当に求めている物が「タイトル固有の物」か「どのタイトルに もあてはまる汎用的なものか」の切り分けが出来ていない • こちらは調査対象を広げる事で解消される見込み
18
調査を実施しての所感 19
所感 • 『具体→抽象化』の対応が属人的な対応が必要だった ◦ 対策:一度1か月分のお問い合わせで対応し対応方法を確立 • 作業過程の情報を残し、情報を参照できる体制の構築 ◦ 誰でも一連の調査が可能に •
お問い合わせ以外の情報源としてのX(Twitter)調査が、ポスト数が多く大変 ◦ 対策:今見ているポストをcsv化する『ついすぽ』というツールを使用 • 抽出対応の手間を削減し効率的に情報を収集する事が可能に 大変な部分はあったが一定体系化を進める事が出来、複数タイトル調査を実施出来る 目途が立ったため、より説得力を持ったリストが作成できる見込み 20
今後の展開 21
今後の展開 • X(Twitter)調査を実施し情報のアップデート ◦ お問い合わせ調査と同じ、または別の複数タイトルを調査しリスト拡充 ▪ 狙い • より多い生の声、タイトル事例を収集し、ネガティブに繋がるポイント の更なる可視化
• CSお問い合わせ調査の実施タイトルを増やす ◦ 現状調査タイトル数が少ないため、複数タイトルで調査しリスト拡充 ▪ 狙い • 収集する意見・要望の数が増える事でリストの説得力強化 • 複数事例を収集し共通のネガティブに繋がるポイントの可視化 • ジャンルによる違いがあれば、その可視化 22
ご清聴ありがとうございました 23
24