Lock in $30 Savings on PRO—Offer Ends Soon! ⏳
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
lambdaの連鎖で作るRecommendEngine
Search
gree_tech
PRO
July 08, 2019
Technology
0
350
lambdaの連鎖で作るRecommendEngine
「Cloud Native Meetup Tokyo #8 」で発表された資料です。
https://cloudnative.connpass.com/event/130892/
gree_tech
PRO
July 08, 2019
Tweet
Share
More Decks by gree_tech
See All by gree_tech
変わるもの、変わらないもの :OSSアーキテクチャで実現する持続可能なシステム
gree_tech
PRO
0
2.4k
マネジメントに役立つ Google Cloud
gree_tech
PRO
0
27
今この時代に技術とどう向き合うべきか
gree_tech
PRO
3
2.4k
生成AIを開発組織にインストールするために: REALITYにおけるガバナンス・技術・文化へのアプローチ
gree_tech
PRO
0
160
安く・手軽に・現場発 既存資産を生かすSlack×AI検索Botの作り方
gree_tech
PRO
0
150
生成AIを安心して活用するために──「情報セキュリティガイドライン」策定とポイント
gree_tech
PRO
1
1.5k
あうもんと学ぶGenAIOps
gree_tech
PRO
0
270
MVP開発における生成AIの活用と導入事例
gree_tech
PRO
0
290
機械学習・生成AIが拓く事業価値創出の最前線
gree_tech
PRO
0
210
Other Decks in Technology
See All in Technology
Snowflake導入から1年、LayerXのデータ活用の現在 / One Year into Snowflake: How LayerX Uses Data Today
civitaspo
0
160
打 造 A I 驅 動 的 G i t H u b ⾃ 動 化 ⼯ 作 流 程
appleboy
0
380
S3を正しく理解するための内部構造の読解
nrinetcom
PRO
3
220
Snowflakeで実践する、生成AIを活用した「自然言語によるデータとの対話」
nayuts
0
120
1人1サービス開発しているチームでのClaudeCodeの使い方
noayaoshiro
2
520
AWSに革命を起こすかもしれない新サービス・アップデートについてのお話
yama3133
0
370
Databricks向けJupyter Kernelでデータサイエンティストの開発環境をAI-Readyにする / Data+AI World Tour Tokyo After Party
genda
1
620
Bedrock AgentCore Memoryの新機能 (Episode) を試してみた / try Bedrock AgentCore Memory Episodic functionarity
hoshi7_n
2
1.1k
マイクロサービスへの5年間 ぶっちゃけ何をしてどうなったか
joker1007
17
7.2k
Kiro を用いたペアプロのススメ
taikis
3
1k
文字列の並び順 / Unicode Collation
tmtms
3
630
re:Invent2025 3つの Frontier Agents を紹介 / introducing-3-frontier-agents
tomoki10
0
330
Featured
See All Featured
The Illustrated Children's Guide to Kubernetes
chrisshort
51
51k
Evolution of real-time – Irina Nazarova, EuRuKo, 2024
irinanazarova
9
1.1k
Stop Working from a Prison Cell
hatefulcrawdad
273
21k
We Have a Design System, Now What?
morganepeng
54
7.9k
Digital Ethics as a Driver of Design Innovation
axbom
PRO
0
130
Responsive Adventures: Dirty Tricks From The Dark Corners of Front-End
smashingmag
254
22k
Building a A Zero-Code AI SEO Workflow
portentint
PRO
0
180
Skip the Path - Find Your Career Trail
mkilby
0
23
Google's AI Overviews - The New Search
badams
0
860
実際に使うSQLの書き方 徹底解説 / pgcon21j-tutorial
soudai
PRO
196
70k
職位にかかわらず全員がリーダーシップを発揮するチーム作り / Building a team where everyone can demonstrate leadership regardless of position
madoxten
47
33k
Tell your own story through comics
letsgokoyo
0
750
Transcript
lambdaの連鎖で作る Recommend Engine
Masahiro Higuchi / 樋口雅拓 • グリーグループのリミア株式会社で、LIMIA という住まい領域のメディアを 作っています。ゲーム会社ですが、最近はメディアに力を入れています。 • 機械学習のエンジニアですが、iOS,
Android,JSなどもやっている何でも屋 です。4歳の娘のパパ。twitter: @mahiguch1 • https://limia.jp/ • https://arine.jp/ • https://aumo.jp/ • https://www.mine-3m.com/mine/
LIMIAとは? • メディアサービス • 記事一覧を表示し、タップすると記事 詳細を閲覧できる。 • AWS:90%、GCP:10%。 • PHP/EC2
→ Go/ECS移行中 ユーザに最適なコンテンツを推薦する事 で、回遊性を向上させたい! → Recommend Engine(推薦システム)を 作ろう。
どうやってRecommendするのか • ユーザを10個ぐらいのセグメントに分類 • セグメント毎にCTRを計算 • 記事の投稿日時で補正したCTRが高い順にリストに掲載 → せっかく今から作るんだから、インスタンスを立てずに行こう!
ユーザモデル作成 ユーザが記事を閲覧すると、その情報が Kinesis に流れます。Lambdaで受け取り、直近10件の閲 覧履歴をDynamoDBに保存します。その変更を DynamoDB Streamに流し、Lambdaで受け取っ て記事のベクトルの平均をユーザベクトルとして DynamoDBに書き込みます。
ユーザ分類 ユーザの閲覧履歴は、 Kinesis経由でS3にも保 存されます。EMRでそれを読み込み、 k-means++で10セグメントに分割し、分割結果を BigQueryに書き込みます。BigQueryでセグメン ト毎の直近2時間のCTRを計算し、S3に書き戻し ます。それをDynamoDBに書きます。EMRでの 計算で出来るセグメントの中心ベクトルとアイデ アのベクトルも同様に
Dynamoに書き出します。 アイデアベクトル生成は 1日1回だと遅いので、 改善したい。
配信 ユーザが記事一覧を表示しようとすると、 Recommend Engineに問い合わせます。 Recommend Engineはユーザの直近10件の記事閲 覧履歴から所属するセグメントを選び、そのセグメント のユーザの直近2時間のCTRが高いものを表示しま す。ただし、古い記事ほど減点し、ユーザの前回ログ イン以降に投稿された記事は加点します。
Recommend Engineはgolangで書いて、 ECS/Fargateで動かしています。
システム構成図 パラメータ一覧 • ユーザベクトル生成は、即時。 • アイデアベクトル生成は、毎日。 • 辞書は2年前のwikipediaベース。 • CTRの計算は直近2時間。
• 推薦対象は、全記事。 • セグメントは10個。 これらについて、A/Bテストを行い、最適値を 探す。1Round 1週間として、6月末までに5回 行う。
まとめ • Recommend Engineは簡単に作れる。 • 今の所は既存編成ロジックより良い結果が出ている。 • システム的にはアイデアベクトル生成をリアルタイムで行いたい。しかし、 S3にある5GBの辞書 を読み込む必要があるため、
Lambdaで実行時に読み込むとコスト的にやばい。何か良いアイ デアがあれば教えて欲しい。 ありがとうございました。懇親会でぜひ声をかけてください!