Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
lambdaの連鎖で作るRecommendEngine
Search
Sponsored
·
Your Podcast. Everywhere. Effortlessly.
Share. Educate. Inspire. Entertain. You do you. We'll handle the rest.
→
gree_tech
PRO
July 08, 2019
Technology
0
480
lambdaの連鎖で作るRecommendEngine
「Cloud Native Meetup Tokyo #8 」で発表された資料です。
https://cloudnative.connpass.com/event/130892/
gree_tech
PRO
July 08, 2019
Tweet
Share
More Decks by gree_tech
See All by gree_tech
変わるもの、変わらないもの :OSSアーキテクチャで実現する持続可能なシステム
gree_tech
PRO
0
3.2k
マネジメントに役立つ Google Cloud
gree_tech
PRO
0
35
今この時代に技術とどう向き合うべきか
gree_tech
PRO
3
2.5k
生成AIを開発組織にインストールするために: REALITYにおけるガバナンス・技術・文化へのアプローチ
gree_tech
PRO
0
240
安く・手軽に・現場発 既存資産を生かすSlack×AI検索Botの作り方
gree_tech
PRO
0
220
生成AIを安心して活用するために──「情報セキュリティガイドライン」策定とポイント
gree_tech
PRO
1
1.6k
あうもんと学ぶGenAIOps
gree_tech
PRO
0
340
MVP開発における生成AIの活用と導入事例
gree_tech
PRO
0
370
機械学習・生成AIが拓く事業価値創出の最前線
gree_tech
PRO
0
260
Other Decks in Technology
See All in Technology
Data Hubグループ 紹介資料
sansan33
PRO
0
2.7k
Bill One 開発エンジニア 紹介資料
sansan33
PRO
5
17k
CDKで始めるTypeScript開発のススメ
tsukuboshi
1
480
OpenShiftでllm-dを動かそう!
jpishikawa
0
130
こんなところでも(地味に)活躍するImage Modeさんを知ってるかい?- Image Mode for OpenShift -
tsukaman
1
160
プロポーザルに込める段取り八分
shoheimitani
1
470
Introduction to Sansan for Engineers / エンジニア向け会社紹介
sansan33
PRO
6
68k
AIと新時代を切り拓く。これからのSREとメルカリIBISの挑戦
0gm
1
2.8k
10Xにおける品質保証活動の全体像と改善 #no_more_wait_for_test
nihonbuson
PRO
2
320
SREが向き合う大規模リアーキテクチャ 〜信頼性とアジリティの両立〜
zepprix
0
460
Kiro IDEのドキュメントを全部読んだので地味だけどちょっと嬉しい機能を紹介する
khmoryz
0
200
Agile Leadership Summit Keynote 2026
m_seki
1
650
Featured
See All Featured
Build The Right Thing And Hit Your Dates
maggiecrowley
39
3k
ピンチをチャンスに:未来をつくるプロダクトロードマップ #pmconf2020
aki_iinuma
128
55k
Odyssey Design
rkendrick25
PRO
1
500
From Legacy to Launchpad: Building Startup-Ready Communities
dugsong
0
140
Leveraging Curiosity to Care for An Aging Population
cassininazir
1
160
SEO for Brand Visibility & Recognition
aleyda
0
4.2k
The World Runs on Bad Software
bkeepers
PRO
72
12k
Noah Learner - AI + Me: how we built a GSC Bulk Export data pipeline
techseoconnect
PRO
0
110
Building Adaptive Systems
keathley
44
2.9k
How People are Using Generative and Agentic AI to Supercharge Their Products, Projects, Services and Value Streams Today
helenjbeal
1
130
Thoughts on Productivity
jonyablonski
74
5k
Exploring anti-patterns in Rails
aemeredith
2
250
Transcript
lambdaの連鎖で作る Recommend Engine
Masahiro Higuchi / 樋口雅拓 • グリーグループのリミア株式会社で、LIMIA という住まい領域のメディアを 作っています。ゲーム会社ですが、最近はメディアに力を入れています。 • 機械学習のエンジニアですが、iOS,
Android,JSなどもやっている何でも屋 です。4歳の娘のパパ。twitter: @mahiguch1 • https://limia.jp/ • https://arine.jp/ • https://aumo.jp/ • https://www.mine-3m.com/mine/
LIMIAとは? • メディアサービス • 記事一覧を表示し、タップすると記事 詳細を閲覧できる。 • AWS:90%、GCP:10%。 • PHP/EC2
→ Go/ECS移行中 ユーザに最適なコンテンツを推薦する事 で、回遊性を向上させたい! → Recommend Engine(推薦システム)を 作ろう。
どうやってRecommendするのか • ユーザを10個ぐらいのセグメントに分類 • セグメント毎にCTRを計算 • 記事の投稿日時で補正したCTRが高い順にリストに掲載 → せっかく今から作るんだから、インスタンスを立てずに行こう!
ユーザモデル作成 ユーザが記事を閲覧すると、その情報が Kinesis に流れます。Lambdaで受け取り、直近10件の閲 覧履歴をDynamoDBに保存します。その変更を DynamoDB Streamに流し、Lambdaで受け取っ て記事のベクトルの平均をユーザベクトルとして DynamoDBに書き込みます。
ユーザ分類 ユーザの閲覧履歴は、 Kinesis経由でS3にも保 存されます。EMRでそれを読み込み、 k-means++で10セグメントに分割し、分割結果を BigQueryに書き込みます。BigQueryでセグメン ト毎の直近2時間のCTRを計算し、S3に書き戻し ます。それをDynamoDBに書きます。EMRでの 計算で出来るセグメントの中心ベクトルとアイデ アのベクトルも同様に
Dynamoに書き出します。 アイデアベクトル生成は 1日1回だと遅いので、 改善したい。
配信 ユーザが記事一覧を表示しようとすると、 Recommend Engineに問い合わせます。 Recommend Engineはユーザの直近10件の記事閲 覧履歴から所属するセグメントを選び、そのセグメント のユーザの直近2時間のCTRが高いものを表示しま す。ただし、古い記事ほど減点し、ユーザの前回ログ イン以降に投稿された記事は加点します。
Recommend Engineはgolangで書いて、 ECS/Fargateで動かしています。
システム構成図 パラメータ一覧 • ユーザベクトル生成は、即時。 • アイデアベクトル生成は、毎日。 • 辞書は2年前のwikipediaベース。 • CTRの計算は直近2時間。
• 推薦対象は、全記事。 • セグメントは10個。 これらについて、A/Bテストを行い、最適値を 探す。1Round 1週間として、6月末までに5回 行う。
まとめ • Recommend Engineは簡単に作れる。 • 今の所は既存編成ロジックより良い結果が出ている。 • システム的にはアイデアベクトル生成をリアルタイムで行いたい。しかし、 S3にある5GBの辞書 を読み込む必要があるため、
Lambdaで実行時に読み込むとコスト的にやばい。何か良いアイ デアがあれば教えて欲しい。 ありがとうございました。懇親会でぜひ声をかけてください!