Upgrade to Pro — share decks privately, control downloads, hide ads and more …

オンライン広告における不正クリック検出手法と歴史

 オンライン広告における不正クリック検出手法と歴史

2016-09-03
データマイニング+WEB東京での発表資料です

Takashi Nishibayashi

September 03, 2016
Tweet

More Decks by Takashi Nishibayashi

Other Decks in Technology

Transcript

  1. ΦϯϥΠϯ޿ࠂʹ͓͚Δ
    ෆਖ਼ΫϦοΫݕग़ख๏ͱྺ࢙
    Takashi Nishibayashi (@hagino3000)
    2016-09-03
    ୈ56ճ #TokyoWebmining

    View Slide

  2. Agenda
    1.Introduction
    2.໰୊ͷഎܠઆ໌
    3.Click Fraudͷख๏
    4.࿦จ঺հɺClick Fraudݕग़ख๏ͷྺ࢙
    5.֤ख๏ͱ࣮૷࣌ͷ࿩

    View Slide

  3. ࣗݾ঺հ
    ID: hagino3000
    Name: ੢ྛ ޹ (Takashi Nishibayashi)
    Job: Software Engineer
    ݱࡏ͸ΞυωοτϫʔΫࣄۀऀʹͯ഑৴ޮ཰ͷ࠷
    దԽʹैࣄ (ೖࡳՁ֨ௐ੔ϩδοΫɾ޿ࠂબ୒ϩ
    δοΫͷઃܭ͔Β࣮૷·Ͱ)

    View Slide

  4. ൃදͷ಺༰
    ✴ ࿩͢͜ͱ
    ✴ Click Fraudͱ͸Կ͔
    ✴ Click Fraudݕग़ख๏ͷྺ࢙
    ✴ ϧʔϧϕʔεͱҟৗݕ஌Ξϓϩʔν
    ✴ ࿩ͤͳ͍ࣄ
    ✴ ฐࣾͷ࣮σʔλɺ۩ମతͳݕग़ϧʔϧ
    ✴ ԿނClick Fraudͳͷ͔
    ✴ Ad FraudͷதͰ΋Click Fraud͕CPCϞσϧͷσΟεϓϨΠ޿
    ࠂΛѻ͍ͬͯΔൃදऀʹͱͬͯ࠷΋਎ۙͳͨΊ

    View Slide

  5. 1. ໰୊ͷഎܠઆ໌
    ✴ Ad Networkͱ͸
    ✴ ΫϦοΫใुܕ޿ࠂ
    ✴ ༻ޠ
    ✴ ෆਖ਼ΫϦοΫͱClick Fraud
    ✴ Click FraudͷԿ͕໰୊ͳͷ͔

    View Slide

  6. Ad Networkͱ͸
    ✴ ΠϯλʔωοτͷσΟεϓϨΠ޿ࠂྖҬʹ͓͍ͯɺ
    ෳ਺ͷ޿ࠂओͱෳ਺ͷഔମࣾΛଋͶͯ޿ࠂΛ഑৴͢
    Δ࢓૊Έ
    ✴ ഔମࣾʹ͸ऩӹΛɺ޿ࠂओʹ͸ίϯόʔδϣϯΛ΋
    ͨΒ͢ͷ͕࢓ࣄ

    View Slide

  7. ΫϦοΫใुܕ޿ࠂ
    ✴ όφʔ޿ࠂͷใुܗଶͷҰͭ
    ✴ ޿ࠂόφʔͷ1ΫϦοΫຖʹɺഔମࣾʹ͸ऩӹ͕ɺ
    ޿ࠂओʹ͸ίετ͕ൃੜ͢ΔϞσϧ
    ✴ Google AdWordsʹొ৔ͨ͠ͷ͕2002೥ [1]
    ✴ PPC (Pay Per Click) or CPC (Cost Per Click)ͱུ͞Ε
    Δ

    View Slide

  8. ࠓճͷొ৔ਓ෺

    Ad Network
    ೖߘ
    ޿ࠂओ (Advertiser)
    ഔମࣾ (Publisher)
    ޿ࠂഔମ (Advertising medium)
    ޿ࠂ഑৴
    ޿ࠂඅ
    ޿ࠂऩӹ
    ΦʔσΟΤϯε
    Click
    Click

    View Slide

  9. ༻ޠɾུޠิ଍
    ✴ IMP (Impression) / Click / Conversion
    ✴ ޿ࠂͷදࣔ / ޿ࠂͷΫϦοΫ / ޿ࠂओࢦఆͷΞΫγϣϯ(੒Ռ)Λ
    ✴ CTR (Click through rate)
    ✴ ͋Δظؒʹ͓͚Δ Click਺/Impression਺ ͕Α͘࢖ΘΕΔ
    ✴ ࿮ (Frame)
    ✴ ޿ࠂ࿮
    ✴ ޿ࠂഔମ (Advertising medium) / ഔମࣾ (Publisher)
    ✴ WebϝσΟΞ΍ɺϞόΠϧΞϓϦ
    ✴ WebϝσΟΞӡӦऀɺϞόΠϧΞϓϦ։ൃऀ
    ✴ Ad Fraud
    ✴ ΦϯϥΠϯ޿ࠂʹର͢Δ࠮ٗߦҝશൠ

    View Slide

  10. ෆਖ਼ΫϦοΫͷఆٛ
    ✴ Google AdWordsͷTypes of invalid traffic [2] ͔ΒҾ༻
    ✴ Accidental clicks that provide no value, such as the
    second click of a double-click
    ✴ Manual clicks intended to increase someone's
    advertising costs
    ✴ Manual clicks intended to increase profits for
    website owners hosting your ads
    ✴ Clicks and impressions by automated tools, robots,
    or other deceptive software

    View Slide

  11. Click Fraud
    ✴ ෆਖ਼ΫϦοΫͷதͰ΋ҙਤతͳ෺
    ✴ ഔମ͕ࣾࣗ਎ͷརӹͷͨΊʹ
    ✴ Α͋͘Δ
    ✴ ޿ࠂओ͕ڝ߹ଞࣾͷ޿ࠂ༧ࢉΛ࡟ΔͨΊʹ
    ✴ ϦεςΟϯά޿ࠂ΁ͷ߈ܸ
    ✴ ޿ࠂओʹͱͬͯՁ஋ͷແ͍ΫϦοΫ
    ✴ ೔ຊͩͱʮϫϯΫϦοΫ࠮ٗʯͱ͍͏ผͷࣄ৅Λࢦ
    ͢୯ޠ͕ઌʹීٴͨͨ͠ΊɺฆΒΘ͍͠

    View Slide

  12. Կ͕໰୊͔
    ✴ Ձ஋ͷແ͍ΫϦοΫʹ޿ࠂओ͕ίετΛࢧ෷͏
    ✴ ؒ઀తʹෆਖ਼Λ͍ͯ͠ͳ͍ଆશһ͕ଛ֐ΛඃΔ
    ✴ ΦϯϥΠϯ޿ࠂʹ͓͚Δ36%͕Click Fraudͱ΋ [4]
    ✴ ΦϯϥΠϯϚʔέςΟϯάʹର͢Δ৴༻ͷᆝଛ

    View Slide

  13. 2. Click Fraudͷख๏
    ✴ Click Fraudͷख๏
    ✴ ݕग़͢ΔͷʹԿ͕೉͍͠ͷ͔
    ✴ ๷ޚଆͷΞΫγϣϯ͸Ͳ͏͢΂͖͔

    View Slide

  14. ॳظͷClick Fraud
    ✴ 2004೥ɺΠϯυͷΫϦοΫ৬ਓͷΠϯλϏϡʔه
    ࣄ͕ THE TIMES OF INDIA ʹܝࡌ͞ΕΔ [5]

    "It's boring, but it is extra money for a couple of
    hours of clicking weblinks every day,"
    ✴ 2004೥ɺGoogle͕12ਓମ੍ͰClick FraudΛߦͳͬ
    ͍ͯͨഔମࣾΛૌ͑ͯউૌ [6]

    View Slide

  15. View Slide

  16. Operation Ghost Click
    ✴ Ϛϧ΢ΣΞΛ4೥ؒӡ༻ͯ͠400ສϢʔβʔʹײ
    છɺ1400ສυϧΛෆਖ਼ʹՔ͍ͩࣄྫ [8]
    ✴ DNS ChangerͱClick HighjackingͰࣗવͳ޿ࠂΫ
    ϦοΫΛ৐ͬऔΔ

    View Slide

  17. Click Fraudͷख๏ [3]
    ✴ ݸਓͷख࡞ۀʹΑΔஆ͔Έͷ͋ΔΫϦοΫ
    ✴ Ϋϥ΢υιʔγϯά
    ✴ ΫϦοΫϑΝʔϜ
    ✴ ΫϦοΫBOT
    ✴ Ϛϧ΢ΣΞ (Botnet)
    ✴ ͦͷଞ
    ✴ → ෆਖ਼ΫϦοΫ ୅ߦ Ͱࠓ͙͢ݕࡧ

    View Slide


  18. http://ever-click.com

    View Slide

  19. ΫϦοΫbotͷػೳ

    View Slide

  20. ਓ͕ؒૢ࡞͍ͯ͠Δέʔε

    View Slide

  21. Ͳ͏͍͔ͨ͠
    ✴ ݱ࣮ͷγεςϜͰ͸ෆਖ਼ΫϦοΫΛ·ͱΊͯແޮԽ͍ͨ͠
    ✴ ҙਤͤͣߦͳͬͨॏෳΫϦοΫ (2ͭ໨͸ແޮ)
    ✴ ༠ൃ͞ΕͨޡΫϦοΫɺڧ੍ભҠ
    ✴ WebαΠτӡӦऀ͕ҙਤతʹ܁Γฦ͠ߦͳͬͨ෺
    ✴ ΫϦοΫ୯ҐͰ൑ఆͰ͖Ε͹ɺͦͷֹ͚ͩࢧ෷͍ΛࢭΊͯ޿ࠂ
    ओʹฦ͢ࣄ͕Ͱ͖Δ
    ✴ Publisher୯ҐͰ൑ఆͨ͠৔߹͸ → ༷ʑ
    ✴ ਓ͕൑அΛԼ͢ͷͰԿ͕·͍ͣͷ͔ཧ༝͕ཉ͍͠
    ✴ ֐͕ແ͚Ε͹ੜ͖ͨڭࢣσʔλͱͯ͠ଘଓ͍͖ͯͨͩͨ͘͠

    View Slide

  22. ೉͠͞
    ✴ ๷ޚଆͷରԠ͕߈ܸऀʹ͹ΕΔͱΠλνͬ͜͝
    ✴ Ԡ౴࣌ʹؾ͍͍ͮͯͳ͍ϑϦΛ͠ͳ͚Ε͹ͳΒͳ͍
    ✴ ྫ:botʹ͸޿ࠂΛදࣔ͠ͳ͍ → τϥΠΞϯυΤ
    ϥʔͷػձΛ༩͑ͯ͠·͏ͨΊNG
    ✴ ঢ়گূڌͰ൑அ͢Δ͔͠ͳ͍
    ✴ ڭࢣσʔλ࡞Γʹ͍͘໰୊
    ✴ ޿ࠂओ/ഔମࣾʹݟͤΔϨϙʔτͷ਺ࣈ͕֬ఆ͢Δલʹ
    ແޮԽॲཧΛ͢Δඞཁ͕͋Δ(༛༧͸1࣌ؒ)

    View Slide

  23. ೉͠͞ (ଓ͖
    ✴ HTTP͸γϯϓϧͰεςʔτϨεͳςΩετϓϩτ
    ίϧ
    ✴ UserAgent΍cookieͷ಺༰͸؆୯ʹِ૷Ͱ͖Δ
    ✴ IPΞυϨε͸͍͘ΒͰ΋੾Γସ͕͑ޮ͘
    ✴ Android͸ԿͰ΋Ͱ͖Δ
    ✴ ϓϩάϥϜͰtouchΠϕϯτΛੜ੒Ͱ͖Δ [9]
    ✴ Android IDͷॻ͖׵͑

    View Slide

  24. ख๏͸༷ʑ
    ✴ ૬ख͸ݟ͑ͳ͍͕ɺϞνϕʔγϣϯ͸൑͍ͬͯΔ
    ✴ ଎͘ɺָʹɺͨ͘͞ΜՔ͍͗ͨ
    ✴ ഑৴ۀऀʹݟ͔ͭΓͨ͘͸ແ͍
    ✴ ঢ়گূڌͱϞνϕʔγϣϯ͔ΒԾઆ͸ཱͯΒΕΔ

    View Slide

  25. 3. Click Fraudݕग़ͷ࿦จ঺հ
    ✴ ྺ࢙
    ✴ Microsoftͷख๏
    ✴ Googleͷख๏
    ✴ ػցֶशϞσϧͱૉੑ
    ✴ ͦͷଞ

    View Slide

  26. ରClick Fraudݚڀͷྺ࢙
    ✴ 2005೥Microsoft Research͔Βݚڀ࿦จ͕ެ։
    ✴ Click Fraud Resistant Methods for Learning Click-
    Through Rates [7]
    ✴ ػցֶशΞϧΰϦζϜͰ͸Πϯυਓ࿑ಇऀʹΑΔΫ
    ϦοΫΛࣝผ͢Δͷ͸࣮࣭ෆՄೳɺͱ͋Δ
    ✴ ϙϫιϯ෼෍ΛԾఆͯ͠ෆਖ਼ΫϦοΫΛআ֎ͨ͠
    CTRΛ༧ଌ͢Δ
    ✴ 2000೥୅Ͱ͸ػցֶश͸ར༻͞Εͣ

    View Slide

  27. A. Tuzhilin. The Lane’s Gifts v.
    Google Report (2006)
    ✴ 2002ʙ2006೥ͷGoogleͷෆਖ਼ΫϦοΫݕग़ख๏
    ͷධՁϨϙʔτ
    ✴ ओʹϧʔϧϕʔεͱҟৗݕ஌ϕʔε
    ✴ PublisherͷΞΧ΢ϯτΛఀࢭ͢ΔϑϩʔͳͲɺӡ
    ༻ͷ࿩͕๛෋
    ✴ ۩ମతͳݕग़ϧʔϧ͸ॻ͍ͯͳ͍
    ✴ Google͸ͦͷޙɺspider.io౳Λങऩ͍ͯ͠Δ

    View Slide

  28. Click Fraud Detection: Adversarial Pattern
    Recognition over 5 Years at Microsoft (2015)
    ✴ Microsoftࣾʹ͓͚Δෆਖ਼ΫϦοΫϑΟϧλγεςϜͷ
    มભ
    ✴ ػցֶशͩͱνϡʔχϯά͕Ͱ͖ͳ͘ͳΔࣄ͕Θ͔ͬ
    ͍ͯͨͷͰɺ͋͑ͯϧʔϧϕʔεʹͨ͠
    ✴ Ϟσϧͷૉੑ͕૿͑Δͱɺ໰୊͕ൃੜͨ࣌͠ʹ໰୊ͱ
    weightͷ੾Γ෼͚͕೉͘͠ͳΔ
    ✴ େن໛ͳෆਖ਼ݕग़γεςϜͩͱϧʔϧϕʔεͷํ༗ར
    ͳ఺͕͋Δͱ൑அ

    View Slide

  29. ✴ ෳ਺ͷϧʔϧͷ૊Έ߹ΘͤͰΫϦοΫΛධՁ
    ✴ ܾఆ໦΋ར༻
    ✴ ϧʔϧϕʔεͷϝϦοτ
    ✴ Ͳͷϧʔϧ͕ൃಈ͔ͨ͠શͯϩάʹ࢒ͤΔ
    ✴ ਖ਼͍͠ϧʔϧ͸ͲΕ͔ɺޡͬͨϧʔϧ͸ͲΕ͔
    ✴ ॳظஈ֊Ͱ͸ෆਖ਼൑ఆͨ͠ϨίʔυΛࣺ͍ͯͯͨ
    ✴ ͜Ε͸ࣦഊͩͬͨ
    ✴ ൑ఆγεςϜͷΞοϓσʔτͷӨڹ͕ଌΕͳ͍

    View Slide


  30. ӡ༻νʔϜ
    ͕͍Δ
    ո͍͠8FCαΠτʹ͸
    ΫϩʔϥʔΛ์ͭ
    ΫϦοΫͷ
    ධՁ

    View Slide

  31. Fraud Detection in Mobile Advertising
    (FDMA) 2012 Competition
    ✴ ΫϦοΫϩά͔Βෆਖ਼ΫϦοΫΛߦͳ͍ͬͯΔ
    PublisherΛ൑ผ͢Δίϯϖͷ্Ґਞͷख๏ͷղઆ
    ✴ ༏উνʔϜͷૉੑ
    ✴ ओʹ౷ܭྔΛ࢖༻ (Χ΢ϯτɺඪ४ภࠩ౳)
    ✴ Chao-Shen EntropyͰ܁Γฦ͠ΫϦοΫΛධՁ
    ✴ ༷ʑͳ࣠ɾظؒͰͷΫϦοΫ਺ͷूܭ
    ✴ generalized boosted regression model (GBM)
    ✴ Random ForestΑΓ΋GBMͷੑೳ͕ग़ͨ

    View Slide


  32. View Slide

  33. (ଓ͖)Ϟσϧͷૉੑ
    ✴ IPAddressͷࠃ͕Πϯυ
    ✴ IPAddressͷࠃ͕γϯΨϙʔϧ
    ✴ IPAddressຖͷΫϦοΫͷΧ΢ϯτ
    ✴ ϦϑΝϥ - UA - IPAddress .. ͷΫϦοΫΧ΢ϯτ
    ✴ ໷ؒͷϦϑΝϥຖͷΫϦοΫΧ΢ϯτ
    ✴ 1࣌ؒຖͷΫϦοΫΧ΢ϯτͷඪ४ภࠩͷখ͞͞

    View Slide


  34. View Slide

  35. ͦͷଞͷख๏
    ✴ Blaff Ads
    ✴ ِͷ޿ࠂ/ਓؒʹ͸ݟ͑ͳ͍޿ࠂΛ഑৴ͯ͠Ϋ
    ϦοΫ͞ΕͨΒbotͱ൑ఆ͢Δ [12]
    ✴ Ϛ΢εΧʔιϧͷي੻ʹΑΔbot൑ఆ
    ✴ εϚʔτϑΥϯͷ৔߹͸εΫϩʔϧ
    ✴ ڵຯ൑ఆʹ΋࢖ΘΕ͍ͯΔ

    View Slide

  36. 4. ࣮૷ͷ࿩
    ✴ ϧʔϧϕʔεɺҟৗݕ஌ϕʔεɺϞσϧϕʔε
    ✴ ࣮૷ίετͱϝϯςφϯε

    View Slide

  37. ͙͢ʹ࣮૷Ͱ͖Δͷ͸
    ✴ ϧʔϧͷ૊Έ߹Θͤ
    ✴ આ໌͠΍͍͢ɺΫϦοΫ୯Ґͷݕग़͕༰қ
    ✴ SQLͰॻ͚Δ
    ✴ ҟৗݕ஌ϕʔε
    ✴ SQLͰॻ͚ͨΓ͢Δɻwindowؔ਺Λ࢖͑͹

    Τϯτϩϐʔ΍KLμΠόʔδΣϯεɺZݕఆ΋͍͚Δɻ
    ✴ Ϟσϧϕʔε(ػցֶश)
    ✴ ڭࢣσʔλΛཷΊΔͷʹ͕͔͔࣌ؒΔ……

    View Slide

  38. ࣮૷ίετ
    ✴ SQL͕౤͛ΒΕΔσʔλετΞɺBigQuery΍
    Amazon Red-ShiftɺHadoopΫϥελ͕͋ΔͱḿΔ
    ✴ ΫΤϦͷεέδϡʔϧ࣮ߦ͸re:dashͰSlackʹ௨஌
    ✴ 2࣌ؒͰݕূՄೳͳॴ·Ͱ͍͚Δ

    View Slide

  39. ҟৗݕ஌Ξϓϩʔν
    ✴ ਖ਼ৗ࣌ͷσʔλ͔ΒϞσϧ͕࡞ΕΔ
    ✴ ҟৗ౓ =
    ✴ ΫϦοΫ਺΍CTRͷόʔετ
    ✴ ࣌ܥྻσʔλͷҟৗݕ஌
    ✴ ޿ࠂ഑৴ͷϩάͩͱपظੑ͕͋Δࣄʹ஫ҙ
    ✴ ΫϦοΫϘοτʹΑͬͯ͸CTRͷόʔετݕ஌Λආ͚Δ
    ͨΊʹɺClickͷ100ഒఔ౓ͷIMP΋ಉ࣌ʹੜ੒ͯ͘͠Δ

    View Slide

  40. पظੑͷ͋Δ࣌ܥྻσʔλ
    ͷҟৗݕ஌
    ✴ Introducing practical and robust anomaly detection in a
    time series [14]
    ✴ ϝτϦΫε͕গͳ͔ͬͨΒ֎෦αʔϏεͷར༻΋ݕ౼Ͱ͖Δ

    View Slide

  41. ຊདྷ౳͘͠ͳΔ͸ͣͷ
    ೋͭͷ֬཰෼෍ؒͷڑ཭

    ✴ ྫ: IMP਺ͱClick਺ɺ௨ৗ͸2ऀͷؒʹ૬͕ؔ͋ΔɻIMP͸࣌ؒप
    ظ͕͋ΔͨΊૣே͸྆ํͱ΋গͳ͍͠ɺனٳΈʹ͸྆ํ૿͑Δ
    ✴ ͦ͏ͳ͍ͬͯͳ͍޿ࠂ࿮͸……??
    ✴ ࣌ؒଳʹؔ܎ͳ͘ৗʹҰఆͷΫϦοΫ͕ੜ͍ͯ͡Δ
    ✴ IMP਺ͷਪҠͱ͸ؔ܎ͳ͘ΫϦοΫ͕όʔετ͢Δ
    ✴ લऀ͸botɺޙऀ͸ਓ͕ؒ΍ΕΔ࣌ʹΫϦοΫͯ͠Δ
    ✴ ܭࢉ
    ✴ 1࣍ݩσʔλͷ৔߹͸มಈ܎਺ͱϐΞιϯ૬ؔ܎਺
    ✴ 2࣍ݩҎ্

    View Slide

  42. Graph-Based
    Anomaly Detection [13]
    ✴ ڞ༗͞Ε͍ͯΔϦιʔε (IPΞυϨεɺUserAgentͷηοτ) ͔Βෆਖ਼ۀऀΛḷΔ
    ✴ bot͔͠དྷͯͳ͍WebαΠτͷϩά͸ٯʹϊΠζ͕গͳ͍ͷͰར༻Ͱ͖Δ

    View Slide

  43. ػցֶश͸ۜͷ஄ؙ͔
    ✴ ϧʔϧϕʔεΛ૊߹ͤͨΑ͏ʹɺ֤έʔεͷ൑ఆʹಛ
    Խͨ͠ऑֶशثΛ·ͱΊͨ෺͸ӡ༻Ͱ͖Δ͔΋͠Εͳ
    ͍
    ✴ FDMA 2012ͷ༏উϞσϧ
    ✴ ߈ܸଆ΋ਐԽ͖͓ͯͯ͠ΓɺClick Fraudରࡦͷܾఆଧ
    ͸ݟ͔͍ͭͬͯͳ͍
    ✴ DeepLearningͰෆਖ਼ݕग़͠·͢ɺͱ͍͏ϓϨεϦϦʔ
    ε͸ग़͖ͯͯ΋಺༰͸֎ʹग़ͯ͜ͳ͍ → ֤͕ࣗΜ͹Δ

    View Slide

  44. ࢀߟจݙ (1)
    1. A. Tuzhilin. The lane’s gifts v. Google report (2006)
    2. About invalid traffic - AdWords Help

    https://support.google.com/adwords/answer/2549113?hl=en
    3. Alrwais, S.A., Dun, C.W., Gupta, M., Gerber, A., Spatscheck, O., Osterweil, E.: Dissecting ghost
    clicks: Ad fraud via misdirected human clicks (2012)
    4. What is click fraud and how can you prevent it?

    http://memeburn.com/2015/06/what-is-click-fraud-and-how-can-you-prevent-it/
    5. India's secret army of online ad 'clickers'

    http://timesofindia.indiatimes.com/business/india-business/Indias-secret-army-of-online-ad-
    clickers/articleshow/654822.cms
    6. https://web.archive.org/web/20090212140101/http://webpronews.com/topnews/2005/07/05/
    google-wins-clickfraud-case-vs-auction-experts
    7. N. Immorlica, K. Jain, M. Mahdian, and K. Talwar. Click fraud resistant methods for learning click-
    through rates. In Internet and Network Economics, pages 34–45 (2005)

    View Slide

  45. ࢀߟจݙ (2)
    8. The Truth About Online Ad Fraud

    https://www.exchangewire.com/blog/2014/05/29/the-truth-about-online-ad-fraud/
    9. Geumhwan Cho, Junsung Cho, Youngbae Song, DonghyunChoi and Hyoungshick Kim. Combating
    online fraud attacks in mobile-based advertising (2016)
    10. B Kitts, JY Zhang, G Wu, W Brandi, J Beasley, K Morrill, J Ettedgui, S Siddhartha, H Yuan, F Gao, et
    al., Click fraud detection: adversarial pattern recognition over 5 years at Microsoft. Real World Data
    Min. Appl. 17(1), 181–201 (2015)
    11. R Oentaryo, E-P Lim, M Finegold, D Lo, F Zhu, C Phua, E-Y Cheu, G-E Yap, K Sim, MN Nguyen, et al.,
    Detecting click fraud in online advertising: a data mining approach. J. Mach. Learn. Res. 15(1), 99–
    140 (2014)
    12. Haddadi, H. Fighting online click-fraud using bluff ads. In SIGCOMM Computer Communications
    Review (CCR) (2010).
    13. White Paper, Fraud Detection: Discovering Connections with Graph Databases Gorka Sadowksi &
    Philip Rathle (2015)
    14. https://blog.twitter.com/2015/introducing-practical-and-robust-anomaly-detection-in-a-time-series

    View Slide