Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
スマートフォン向けインターネット広告配信システムの配信最適化
Search
Takashi Nishibayashi
July 11, 2017
Business
3
1.9k
スマートフォン向けインターネット広告配信システムの配信最適化
DATUM STUDIO Conference 2017夏での講演資料です
非エンジニア向けの内容です
Takashi Nishibayashi
July 11, 2017
Tweet
Share
More Decks by Takashi Nishibayashi
See All by Takashi Nishibayashi
診断前の病歴テキストを対象としたLLMによるエンティティリンキング精度検証
hagino3000
1
83
論文紹介 Improving Medical Reasoning through Retrieval and Self-Reflection with Retrieval-Augmented Large Language Models
hagino3000
0
830
論文紹介 Audience Size Forecasting Fast and Smart Budget Planning for Media Buyers
hagino3000
0
240
論文紹介 Towards a Fair Marketplace: Counterfactual Evaluation of the trade-off between Relevance, Fairness & Satisfaction in Recommendation Systems
hagino3000
1
620
論文紹介 Budget Management Strategies in Repeated Auctions (公開版)
hagino3000
2
280
論文紹介 A Request-level Guaranteed Delivery Advertising Planning: Forecasting and Allocation
hagino3000
1
120
論文紹介 Online Experimentation with Surrogate Metrics Guidelines and a Case Study
hagino3000
0
310
論文紹介 Bidding Machine: Learning to Bid for Directly Optimizing Profits in Display Advertising
hagino3000
1
200
論文紹介 Balancing Relevance and Discovery to Inspire Customers in the IKEA App
hagino3000
0
730
Other Decks in Business
See All in Business
【Progmat】受益証券発行信託に係る税制改正の背景と今後のST市場
progmat
0
110
Feedback in Action
lycorptech_jp
PRO
0
140
そのAWSコスト、もっと下げられるかも? 150社超のコスト分析で見えた「鉄板」削減Tips
o2mami
1
1.2k
20250701_UPDATER_companysummary
updater_pr
0
80k
c-slide_会社紹介資料テンプレート
coneinc
0
1.7k
c-slide_サービス紹介資料テンプレート
coneinc
0
340
大AI時代を長く活躍するための 「コンフォート・ゾーン」の新解釈
mkitahara01985
0
140
セーフィー株式会社(Safie Inc.) 会社紹介資料
safie_recruit
6
350k
息苦しい目標設定に、さよならを。 〜挑戦するチームへ導く「成長観点」と「給与観点」の使い分け〜
mkitahara01985
2
260
Company Deck_2025.06
sixtypercent
0
180
なぜConfluence Cloudだったのか?〜『運用効率と将来性』から見る最適解と、予期せぬ課題を乗り越えた移行のリアル~ / Why-we-choose-confluence-cloud
medley
0
170
『Policy Fund』採択団体 政策提言集/Policy Fund Report
polipoli
0
400
Featured
See All Featured
Easily Structure & Communicate Ideas using Wireframe
afnizarnur
194
16k
Building Applications with DynamoDB
mza
95
6.5k
Why You Should Never Use an ORM
jnunemaker
PRO
56
9.4k
"I'm Feeling Lucky" - Building Great Search Experiences for Today's Users (#IAC19)
danielanewman
228
22k
The Power of CSS Pseudo Elements
geoffreycrofte
77
5.8k
Site-Speed That Sticks
csswizardry
10
660
Making the Leap to Tech Lead
cromwellryan
134
9.3k
Product Roadmaps are Hard
iamctodd
PRO
54
11k
Build The Right Thing And Hit Your Dates
maggiecrowley
36
2.8k
Stop Working from a Prison Cell
hatefulcrawdad
270
20k
Git: the NoSQL Database
bkeepers
PRO
430
65k
A designer walks into a library…
pauljervisheath
206
24k
Transcript
εϚʔτϑΥϯ͚ Πϯλʔωοτࠂ৴γεςϜ ʹ͓͚Δ৴࠷దԽ 5BLBTIJ/JTIJCBZBTIJ %"56.456%*0$POGFSFODFՆ
Agenda 1.ࣗݾհ 2.ΞυωοτϫʔΫͱωοτࠂۀքʹ͍ͭͯ 1.ωοτࠂϏδωεͷ֓ཁ 2.ࠂ৴ͰΘΕΔਓೳཁૉٕज़ 3.ฐࣾࣄྫͷհ 1.ΫϦοΫ୯Ձͷௐઅ 2.৴͢Δࠂͷબ
ࣗݾհ ID: hagino3000 Name: ྛ (Takashi Nishibayashi) Job: Software
Engineer ݱࡏZucks AdNetworkʹͯ৴ϩδοΫ ͷ։ൃΛ୲ɻσʔλੳج൫ͷߏங͔Β ػցֶशΛͬͨ༧ଌɺ࠷దԽॲཧ·Ͱɻ
࠷ۙͷ׆ಈ ਓೳֶձࢽ Vol. 32 No. 4 (2017/07) ͷʮࠂͱAI ಛूʯʹຊͷ༰ʹؔ࿈ ͨ͠هࣄΛدߘ͍ͯ͠·͢ɻ
ৄࡉʹڵຯ͕͋Δํ͝Ұಡ͍ͩ͘͞ɻ
Ad Networkͱ ✴ ΠϯλʔωοτͷσΟεϓϨΠࠂྖҬʹ͓͍ͯɺ ෳͷࠂओͱෳͷഔମࣾΛଋͶͯࠂΛ৴͢ ΔΈ ✴ ഔମࣾʹऩӹΛɺࠂओʹίϯόʔδϣϯΛ ͨΒ͢ͷ͕ࣄ ✴
ࠂϦΫΤετຖʹͲͷࠂΛ৴͢Δ͔ϩδοΫ Ͱܾఆ͍ͯ͠Δ
Ad Network ࠂೖߘ ࠂओ ഔମࣾ ࠂഔମ (ϝσΟΞ) ࠂ৴ ࠂඅ
ࠂऩӹ ΦʔσΟΤϯε Click
ωοτࠂ৴ͱ ਓೳཁૉٕज़ ✴ ৴͢Δࠂͷબ ✴ CTRɾCVR༧ଌ ✴ ϢʔβʔτϥοΩϯά ✴ ྫ:
ෳσόΠεΛލ͍ͩߪങߦಈͷ ✴ ࠂޮՌͷਪఆ ✴ ྫ: TV CMͷޮՌਪఆ ✴ ࠂΦʔΫγϣϯʹ͓͚ΔϦΞϧλΠϜೖࡳ
Zucks AdNetworkʹ͓͚Δ ࣄྫհ ✴ લఏ ✴ ৫ͷσʔλ׆༻εςʔδ ✴ Ad NetworkʹٻΊΒΕΔ৴
✴ ࣄྫ1. ΫϦοΫ୯Ձͷ࠷దԽ ✴ ࣄྫ2. ୳ࡧ৴ͷޮԽ
৫ͷσʔλ׆༻εςʔδ σʔλΛཷΊΒΕΔ σʔλ͕ར༻Ͱ͖ͳ͍ॴʹ͍͖ͳΓػցֶशΛͬͨ γεςϜΛσϓϩΠͰ͖ͳ͍ σʔλ͕Ҿ͖ग़ͤΔ ੳ͕Ͱ͖Δ ༧ଌॲཧͷγεςϜԽ ༧ଌ݁ՌΛͬͨऩӹͷ࠷େԽ ݕূͷ
Έ #*πʔϧͷಋೖ "#ςετ ҼՌޮՌਪ ཧ࠷దԽ ػցֶश ੳج൫ͷߏங
ཁһ֬อ ✴ ࠷ॳ͔ΒશͯͷϨΠϠʔͰඞཁͳεΩϧΛ࣋ͭਓࡐ Λἧ͑Δͷ͍͠ ✴ Γͳ͍ॴ͍͍ײ͡ʹิ͍ͬͯ͘ඞཁ͕͋Δ ✴ ֎෦……??
ղ͖͍ͨ ✴ ͍ͭ ✴ ୭ʹ or Ͳͷࠂʹ ✴ ͲͷࠂΛ ✴
(ΫϦοΫ୯Ձ) ͍͘ΒͰ ✴ දࣔ͢Δͷ͔
ఆࣜԽ ✴ ඪ ✴ ഔମࣾऩӹͷ࠷େԽ ✴ ੍݅ ✴ ࠂओͷඪCPA (ίϯόʔδϣϯ֫ಘ͋ͨΓͷίετ)
✴ ࠂओͷ༧ࢉ ✴ ࠂදࣔճ ͨͩ͠ ΫϦοΫɾίϯόʔδϣϯ ৴͠ͳ͍ͱΘ͔Βͳ͍
Ұͭͷ࠷దԽͱͯ͠ղ͚Εྑ͍ ͷͰ͕͢ɺ͍͠ͷͰෳͷʹ ͚ͯ։ൃͯ͠·͢
ΫϦοΫ୯Ձͷௐ ✴ CPA (ίϯόʔδϣϯ͋ͨΓͷ֫ಘίετ) Λࠂओ ͷཁʹ߹ΘͤΔͷ͕త ✴ ͋ΔࠂΩϟϯϖʔϯΛ৴͢Δͱͯ͠ ✴ ίϯόʔδϣϯ͕औΕΔͷ୯Ձ্͍͛ͨ
՝ ✴ ྫ ✴ ίϯόʔδϣϯ100% ✴ ΫϦοΫ୯Ձ100ԁͳΒCPA100ԁͱͳΔ ✴ ͳΔ͘৴ͷॳظஈ֊ʹ͓͍ͯίϯόʔδϣϯ Λਪఆ͍ͨ͠
✴ ͔͠͠ɺ৴ॳظΫϦοΫͷαϯϓϧαΠζ͕খ ͘͞౷ܭతʹྑ͍ͱѱ͍ͱݴ͑ͳ͍
CVRਪఆ ✴ ίϯόʔδϣϯͷࣅͨಉ࢜Ͱ͋ΕɺCVRۙ͘ ͳΔͣɻ͜ΕΛࣄલͱͯ͑͠ͳ͍͔ ✴ ࣅͨಉ࢜ͷू߹ΫϥελϦϯάͰٻΊΔ ✴ ࣄલ֬Λಋೖ͠ɺϕΠζͷఆཧʹΑΓΫϦοΫ n ͷ
͏ͪ k ݸͷίϯόʔδϣϯΛ؍ଌͨ͠ޙͷ CVR ͷࣄޙ ֬Λߟ͑ΔɻCVRͷࣄલΛϕʔλBeta(α, β) ͱ͢ΔͱɺCVRͷࣄޙϕʔλʹͳΔɻ
݁Ռݕূ1 ✴ ༧ଌਫ਼ΦϑϥΠϯ࣮ݧͰݕূͰ͖Δ ✴ RMSE, Accuracy, Precision, F-value …. ✴
ϏδωεαΠυ͕Γ͍ͨͷɺ༧ଌ͕ͨΔࣄʹΑ ΔܦӦࢦඪͷӨڹ (ྫ: ച্) ༧ଌਫ਼͕YY্͕Γ·ͨ͠ ച্Ͳ͏ͳΔͷʜʜ
݁Ռݕূ2 ✴ ࣮ࡍʹCPA͕ඪCPAʹۙ͘ͳΔͷ͔ɺຊ൪ʹϦϦʔ εͯ͠ݕূ ✴ log(࣮CPA/ඪCPA) ΛطଘϩδοΫద༻Ωϟϯ ϖʔϯͱൺֱɻରͰݟΔͷɺ2ഒʹͳΔͷͱ ʹͳΔͷΛಉ͡ΠϯύΫτͱͯ͠ଊ͑ΔͨΊɻ ✴
log(࣮CPA/ඪCPA) ͷʹ͍ͭͯϊϯύϥϝτ ϦοΫݕఆͰ͕ࠩ͋Δࣄͷ֬ೝͱ4ҐͷࠩΛΈΔ
ެ։൛ʹ͖ͭআ ݁Ռ
৴͢Δࠂͷબ ✴ ഔମऀऩӹͷߴ͍ࠂΛଟ͘৴͍ͨ͠ ✴ ΫϦοΫ͕ଟ͘ίϯόʔδϣϯऔΕΔ ✴ ݁ՌతʹΫϦοΫ୯Ձ্͛ΒΕΔ ✴ ޮՌ͕ྑ͍͔ѱ͍͔৴͠ͳ͍ͱΘ͔Βͳ͍ ✴
ࠂͱࠂͷΈ߹Θͤແʹ͋ΔͷͰૣ͘ྑ ͍Έ߹ΘͤΛҾ͖͍ͯͨ ✴ ࣝͷ׆༻ͱ୳ࡧͷδϨϯϚ
୳ࡧͱ׆༻ ✴ ׆༻ ✴ ʹͱͬͯऩӹ͕ߴ͍ͱΘ͔͍ͬͯΔࠂΛ৴ ✴ ࠷ߴ͍ͷΈΛ৴ͨ͠Βྑ͍༁Ͱͳ͍ ✴ طଘͷόϯσΟοτΞϧΰϦζϜΛͦͷ··͍ ʹ͍͘
✴ ୳ࡧ ✴ ʹͱͬͯऩӹ͕ະͷࠂΛ৴͢Δ
ଟόϯσΟοτʹΑΔ Ξϓϩʔν ✴ εϩοτϚγϯͷϝλϑΝʔ ✴ εϩοτϚγϯ͕ෳ͋ͬͨ࣌ʹͲΕΛԿճҾ͘ ͖͔ ✴ ϝϦοτ ✴
ڭࢣσʔλ͕ແ͍ॴ͔ΒελʔτͰ͖Δ ✴ ৽͍͠ࠂΩϟϯϖʔϯ͕࣍ʑͱೖߘ͞ΕΔઃఆ
୳ࡧͷޮԽ ✴ ͋Δʹ͓͚Δɺଞͷࠂͱͷൺֱ ✴ ଞͷࠂͱൺֱͯ͠ऩӹ͕ѱ͍ͱΘ͔ͬͨ࣌Ͱ୳ ࡧΛΊΕྑ͍ ✴ ऩӹੑ(eCPM)ͷ্քΛ͏ ✴ ֬తʹߴͯ͘͜Ε͙Β͍ͩΖ͏ɺͱ͍͏
✴ ৴Λଓ͚ΔࣄͰԼ͕͍ͬͯ͘
ݕূ ✴ ͷऩӹ͕Ͳ͏มԽ͔ͨ͠Λݟ͍ͨ ✴ ͔͠͠ɺऩӹ࣌ؒมԽͷӨڹΛڧ͘ड͚Δ ✴ ظʹ༧ࢉফԽ͕͋ΔͨΊɺඞͣ৳ͼΔ ✴ ୯७ʹϩδοΫมߋલޙͰൺֱͰ͖ͳ͍
ϥϯμϜԽൺֱࢼݧʹΑΔݕূ ϩδοΫͷมߋʹΑΔհೖ σʔλαϯϓϧɺԣ࣠࣌ؒ ࠂΛ܈ʹ͚ͯσʔλΛऔΔ
݁Ռ ެ։൛ʹ͖ͭআ
͋Γ͕ͱ͏͍͟͝·ͨ͠