Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
Kaggle Google Quest Q&A Labeling - 23th place s...
Search
Shuhei Goda
February 28, 2020
Technology
4
4k
Kaggle Google Quest Q&A Labeling - 23th place solution
Shuhei Goda
February 28, 2020
Tweet
Share
More Decks by Shuhei Goda
See All by Shuhei Goda
ジョブマッチングサービスにおける相互推薦システムの応用事例と課題
hakubishin3
3
680
とある事業会社にとっての Kaggler の魅力
hakubishin3
8
1.9k
課題の解像度が荒かったことで意図した改善ができなかった話
hakubishin3
3
910
Wantedly におけるマッチング体験を最大化させるための推薦システム
hakubishin3
4
990
Recommendation Industry Talks #1 Opening
hakubishin3
1
310
会社訪問アプリ「Wantedly Visit」での シゴトに関する興味選択機能と推薦改善
hakubishin3
0
560
論文紹介: Improving Implicit Feedback-Based Recommendation through Multi-Behavior Alignment(Xin Xin et al., 2023)
hakubishin3
0
530
Feedback Prize - English Language Learning における擬似ラベルの品質向上の取り組み
hakubishin3
0
880
ウォンテッドリーにおける推薦システムのオフライン評価の仕組み
hakubishin3
7
6.5k
Other Decks in Technology
See All in Technology
OCI Network Firewall 概要
oracle4engineer
PRO
0
4.1k
オープンソースAIとは何か? --「オープンソースAIの定義 v1.0」詳細解説
shujisado
9
1k
Lambda10周年!Lambdaは何をもたらしたか
smt7174
2
110
SSMRunbook作成の勘所_20241120
koichiotomo
2
150
強いチームと開発生産性
onk
PRO
35
11k
AWS Lambda のトラブルシュートをしていて思うこと
kazzpapa3
2
180
[CV勉強会@関東 ECCV2024 読み会] オンラインマッピング x トラッキング MapTracker: Tracking with Strided Memory Fusion for Consistent Vector HD Mapping (Chen+, ECCV24)
abemii
0
220
EventHub Startup CTO of the year 2024 ピッチ資料
eventhub
0
120
OCI 運用監視サービス 概要
oracle4engineer
PRO
0
4.8k
AGIについてChatGPTに聞いてみた
blueb
0
130
Amplify Gen2 Deep Dive / バックエンドの型をいかにしてフロントエンドへ伝えるか #TSKaigi #TSKaigiKansai #AWSAmplifyJP
tacck
PRO
0
390
Introduction to Works of ML Engineer in LY Corporation
lycorp_recruit_jp
0
130
Featured
See All Featured
Documentation Writing (for coders)
carmenintech
65
4.4k
Designing on Purpose - Digital PM Summit 2013
jponch
115
7k
Keith and Marios Guide to Fast Websites
keithpitt
409
22k
Fireside Chat
paigeccino
34
3k
Music & Morning Musume
bryan
46
6.2k
Designing for Performance
lara
604
68k
The Success of Rails: Ensuring Growth for the Next 100 Years
eileencodes
44
6.8k
StorybookのUI Testing Handbookを読んだ
zakiyama
27
5.3k
5 minutes of I Can Smell Your CMS
philhawksworth
202
19k
Code Review Best Practice
trishagee
64
17k
Templates, Plugins, & Blocks: Oh My! Creating the theme that thinks of everything
marktimemedia
26
2.1k
Java REST API Framework Comparison - PWX 2021
mraible
PRO
28
8.2k
Transcript
©2020 Wantedly, Inc. 23th place solution Kaggle Google Quest Q&A
Labeling লձ Feb 28, 2020 - Shuhei Goda - @jy_msc
©2020 Wantedly, Inc. Team - The Hand Shuhei Goda @jy_msc
Visit Engineering Team at Wantedly Naomichi Agata @agatan_ People Engineering Team at Wantedly
©2020 Wantedly, Inc. Model Pipeline #FSUCBTF VODBTFE -JHIU(#. #FSUCBTF VODBTFE
Settings ɾ3fold with GroupKFold ɾBCE + margin ranking loss ɾ3epoch Settings ɾmax_depth=1 ɾlr=0.1 Meta features ɾtext length ɾstackexchange Text data ɾquestion_title ɾquestion_body ɾanswer 1SF1SPDFTT 2BOE" 1SF1SPDFTT POMZ2 ɾquestion_title ɾquestion_body ɾquestion_title ɾquestion_body ɾanswer Settings ɾhtml escape ɾhead+tail truncation
©2020 Wantedly, Inc. ɾHTMLจࣈྻͷΞϯΤεέʔϓ Pre-Process IUUQTXXXLBHHMFDPNDHPPHMFRVFTUDIBMMFOHFEJTDVTTJPO
©2020 Wantedly, Inc. ɾςΩετσʔλͷ݁߹ͱτϦϛϯά ɹɾ[CLS] + question_title + [SEP] +
question_body + [SEP] + answer ɾquestion_body ͱ answer ͕ࢦఆͷ͞Λ͑ͨ߹, ͔྆ΒಉαΠζΛτϦϛϯά Pre-Process IUUQTBSYJWPSHBCT
©2020 Wantedly, Inc. ɾBert-base (uncased) ɹɾޙΖ4ͭͷӅΕͷग़ྗΛ༻ https://arxiv.org/abs/1905.05583 ɹɾQAؒͷSEP tokenͷग़ྗΛ༻ Model
Architecture
©2020 Wantedly, Inc. ɾLabel weight ɹɾ؆୯ͦ͏ͳλεΫweightΛখ͘͞, ෆۉߧͰͦ͠͏ͳλεΫweightΛେ͖͘ ɹɾgpyoptͰweightͷ୳ࡧΛࢼͨ͠Έ͕ͨ, Լهͷ୯७ͳΓํ͕࠷ྑ͔ͬͨ Loss
function Label weight ͋Γ Public: 0.45979, Private: 0.41440 Label weight ͳ͠ Public: 0.43455, Private: 0.40602
©2020 Wantedly, Inc. ɾBCE + margin ranking loss (1 :
1) ɹɾϛχόονΛ2ͭʹׂͯ͠ margin ranking loss Λܭࢉ Loss function BCE + margin ranking loss Public: 0.45979, Private: 0.41440 BCE Public: 0.44006, Private: 0.40668
©2020 Wantedly, Inc. ɾQuestion Model ɹɾQ༻ͷλεΫΛQuestion text͚ͩΛͬͯղ͘ ɹɾΠϯϓοτQ͚ͩͰ͍͍ͷͰ, Qͷtruncationͷྔ͕ݮΔ (Qͷใྔ͕૿͑Δ)
Training Q model + Q and A model Public: 0.45979, Private: 0.41440 Q and A model × 2 (seed average) Public: 0.44298, Private: 0.40613
©2020 Wantedly, Inc. ɾLightGBM ɹɾmax_depth=1, lr=0.1 ɹɾmeta features ɹɹɾtext length
(question, answer) ɹɹɾmeta data from stackexchange (Score, View, FavoriteCount, …) Post-Process LightGBM Public: 0.45979, Private: 0.41440 Simple binning without meta features Public: 0.45282, Private: 0.41387
©2020 Wantedly, Inc. Why we used LightGBM? 1. Simple binning
method ɹɾ༧ଌΛࢄԽ͢Δ͜ͱͰ Spearman’s correlation ͕ྑ͘ͳΔ͜ͱʹؾͮ͘ ɹɾtarget͝ͱʹϏϯαΠζΛࣄલʹઃఆͯ͠Ϗϯೋϯά ɹɾϏϯαΠζݻఆʹ্ͨ͠ͰBertͷ֤epochͷग़ྗΛweighted average (weight࠷దԽ)
©2020 Wantedly, Inc. Why we used LightGBM? 2. Optimize bin-size
and weights ɹɾϏϯαΠζ࠷దͳΛ͍ͨ͘ͳͬͨ ɹɾϏϯαΠζͱweightsͷಉ࣌࠷దԽ্͕ͨ͠ख͍͔͘ͳ͍ ɹɾ࠷దͳϏϯαΠζ༧ଌͷܗʹΑܾͬͯ·Δ. ֤foldͷ࠷దͳϏϯαΠζͷฏۉͱ weighted averageޙͷ༧ଌ࠷దͳͷ͔Βဃ͢Δ
©2020 Wantedly, Inc. Why we used LightGBM? 3. LightGBM ɹɾϏϯαΠζͱweightsͷಉ࣌࠷దԽ͍ͨ͠
ɹɾmeta features͍͍ͨ ɹɾGBDTσʔλΛׂׂͯ͠ޙͷྖҬʹ࠷దͳΛׂΓͯΔख๏ ɹɹˠ ઙ͍߹Ϗϯχϯάͱಉ༷ͷࢄԽ͕Ͱ͖ΔΜ͡Όͳ͍͔ max_depth=2 max_depth=8
©2020 Wantedly, Inc. 4. LightGBM (parameter tuning) ɹɾࢄԽ͢Δ΄Ͳscore͕ྑ͘ͳΔͷͰ, ߏΛۃྗγϯϓϧʹ͍ͨ͠ ɹɾtrainσʔλΛׂͯ͠࠷దͳύϥϝʔλΛݟ͚ͭΔ
ɹɾmax_depthΛҰ൪খ͘͞, lrΛۃྗେ͖ͨ͘͠ํ͕score͕ྑ͘ͳͬͨ Why we used LightGBM?
©2020 Wantedly, Inc. ɾsample weightͷઃఆ ɾhostͷ୯ޠΛΠϯϓοτͷઌ಄ྻʹஔ͘ ɾnew tokenͷՃ ɾBert-base casedΛ͏
ɾtexͷίʔυϒϩοΫΛྗٕͰফڈ Didn’t work for us
©2020 Wantedly, Inc. Discussion: https://www.kaggle.com/c/google-quest-challenge/discussion/129904#742302 Kernel: https://www.kaggle.com/shuheigoda/23th-place-solusion Links
©2020 Wantedly, Inc. https://www.wantedly.com/projects/375150 We are hiring !