$30 off During Our Annual Pro Sale. View Details »
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
Kaggle Google Quest Q&A Labeling - 23th place s...
Search
Shuhei Goda
February 28, 2020
Technology
4
4.1k
Kaggle Google Quest Q&A Labeling - 23th place solution
Shuhei Goda
February 28, 2020
Tweet
Share
More Decks by Shuhei Goda
See All by Shuhei Goda
Turing × atmaCup #18 - 1st Place Solution
hakubishin3
0
1k
ジョブマッチングサービスにおける相互推薦システムの応用事例と課題
hakubishin3
3
1.1k
とある事業会社にとっての Kaggler の魅力
hakubishin3
9
3k
課題の解像度が荒かったことで意図した改善ができなかった話
hakubishin3
3
1.1k
Wantedly におけるマッチング体験を最大化させるための推薦システム
hakubishin3
4
1.3k
Recommendation Industry Talks #1 Opening
hakubishin3
1
430
会社訪問アプリ「Wantedly Visit」での シゴトに関する興味選択機能と推薦改善
hakubishin3
0
700
論文紹介: Improving Implicit Feedback-Based Recommendation through Multi-Behavior Alignment(Xin Xin et al., 2023)
hakubishin3
0
680
Feedback Prize - English Language Learning における擬似ラベルの品質向上の取り組み
hakubishin3
0
1.1k
Other Decks in Technology
See All in Technology
MS Ignite 2025で発表されたFoundry IQをRecap
satodayo
3
230
A Compass of Thought: Guiding the Future of Test Automation ( #jassttokai25 , #jassttokai )
teyamagu
PRO
1
160
モバイルゲーム開発におけるエージェント技術活用への試行錯誤 ~開発効率化へのアプローチの紹介と未来に向けた展望~
qualiarts
0
260
ECMAScript仕様の最新動向: プロセスの変化と仕様のトレンド
uhyo
2
420
TROCCO 2025年の進化をデモで振り返る
__allllllllez__
0
330
なぜ使われないのか?──定量×定性で見極める本当のボトルネック
kakehashi
PRO
1
670
Modern Data Stack大好きマンが語るSnowflakeの魅力
sagara
0
270
バグハンター視点によるサプライチェーンの脆弱性
scgajge12
2
310
その設計、 本当に価値を生んでますか?
shimomura
2
160
HIG学習用スライド
yuukiw00w
0
110
useEffectってなんで非推奨みたいなこと言われてるの?
maguroalternative
9
6.2k
32のキーワードで学ぶ はじめての耐量子暗号(PQC) / Getting Started with Post-Quantum Cryptography in 32 keywords
quiver
0
170
Featured
See All Featured
Intergalactic Javascript Robots from Outer Space
tanoku
273
27k
JavaScript: Past, Present, and Future - NDC Porto 2020
reverentgeek
52
5.7k
Thoughts on Productivity
jonyablonski
73
5k
Music & Morning Musume
bryan
46
7k
Keith and Marios Guide to Fast Websites
keithpitt
413
23k
Practical Tips for Bootstrapping Information Extraction Pipelines
honnibal
25
1.6k
Java REST API Framework Comparison - PWX 2021
mraible
34
9k
The Power of CSS Pseudo Elements
geoffreycrofte
80
6.1k
Stop Working from a Prison Cell
hatefulcrawdad
273
21k
Creating an realtime collaboration tool: Agile Flush - .NET Oxford
marcduiker
35
2.3k
Building Better People: How to give real-time feedback that sticks.
wjessup
370
20k
Learning to Love Humans: Emotional Interface Design
aarron
274
41k
Transcript
©2020 Wantedly, Inc. 23th place solution Kaggle Google Quest Q&A
Labeling লձ Feb 28, 2020 - Shuhei Goda - @jy_msc
©2020 Wantedly, Inc. Team - The Hand Shuhei Goda @jy_msc
Visit Engineering Team at Wantedly Naomichi Agata @agatan_ People Engineering Team at Wantedly
©2020 Wantedly, Inc. Model Pipeline #FSUCBTF VODBTFE -JHIU(#. #FSUCBTF VODBTFE
Settings ɾ3fold with GroupKFold ɾBCE + margin ranking loss ɾ3epoch Settings ɾmax_depth=1 ɾlr=0.1 Meta features ɾtext length ɾstackexchange Text data ɾquestion_title ɾquestion_body ɾanswer 1SF1SPDFTT 2BOE" 1SF1SPDFTT POMZ2 ɾquestion_title ɾquestion_body ɾquestion_title ɾquestion_body ɾanswer Settings ɾhtml escape ɾhead+tail truncation
©2020 Wantedly, Inc. ɾHTMLจࣈྻͷΞϯΤεέʔϓ Pre-Process IUUQTXXXLBHHMFDPNDHPPHMFRVFTUDIBMMFOHFEJTDVTTJPO
©2020 Wantedly, Inc. ɾςΩετσʔλͷ݁߹ͱτϦϛϯά ɹɾ[CLS] + question_title + [SEP] +
question_body + [SEP] + answer ɾquestion_body ͱ answer ͕ࢦఆͷ͞Λ͑ͨ߹, ͔྆ΒಉαΠζΛτϦϛϯά Pre-Process IUUQTBSYJWPSHBCT
©2020 Wantedly, Inc. ɾBert-base (uncased) ɹɾޙΖ4ͭͷӅΕͷग़ྗΛ༻ https://arxiv.org/abs/1905.05583 ɹɾQAؒͷSEP tokenͷग़ྗΛ༻ Model
Architecture
©2020 Wantedly, Inc. ɾLabel weight ɹɾ؆୯ͦ͏ͳλεΫweightΛখ͘͞, ෆۉߧͰͦ͠͏ͳλεΫweightΛେ͖͘ ɹɾgpyoptͰweightͷ୳ࡧΛࢼͨ͠Έ͕ͨ, Լهͷ୯७ͳΓํ͕࠷ྑ͔ͬͨ Loss
function Label weight ͋Γ Public: 0.45979, Private: 0.41440 Label weight ͳ͠ Public: 0.43455, Private: 0.40602
©2020 Wantedly, Inc. ɾBCE + margin ranking loss (1 :
1) ɹɾϛχόονΛ2ͭʹׂͯ͠ margin ranking loss Λܭࢉ Loss function BCE + margin ranking loss Public: 0.45979, Private: 0.41440 BCE Public: 0.44006, Private: 0.40668
©2020 Wantedly, Inc. ɾQuestion Model ɹɾQ༻ͷλεΫΛQuestion text͚ͩΛͬͯղ͘ ɹɾΠϯϓοτQ͚ͩͰ͍͍ͷͰ, Qͷtruncationͷྔ͕ݮΔ (Qͷใྔ͕૿͑Δ)
Training Q model + Q and A model Public: 0.45979, Private: 0.41440 Q and A model × 2 (seed average) Public: 0.44298, Private: 0.40613
©2020 Wantedly, Inc. ɾLightGBM ɹɾmax_depth=1, lr=0.1 ɹɾmeta features ɹɹɾtext length
(question, answer) ɹɹɾmeta data from stackexchange (Score, View, FavoriteCount, …) Post-Process LightGBM Public: 0.45979, Private: 0.41440 Simple binning without meta features Public: 0.45282, Private: 0.41387
©2020 Wantedly, Inc. Why we used LightGBM? 1. Simple binning
method ɹɾ༧ଌΛࢄԽ͢Δ͜ͱͰ Spearman’s correlation ͕ྑ͘ͳΔ͜ͱʹؾͮ͘ ɹɾtarget͝ͱʹϏϯαΠζΛࣄલʹઃఆͯ͠Ϗϯೋϯά ɹɾϏϯαΠζݻఆʹ্ͨ͠ͰBertͷ֤epochͷग़ྗΛweighted average (weight࠷దԽ)
©2020 Wantedly, Inc. Why we used LightGBM? 2. Optimize bin-size
and weights ɹɾϏϯαΠζ࠷దͳΛ͍ͨ͘ͳͬͨ ɹɾϏϯαΠζͱweightsͷಉ࣌࠷దԽ্͕ͨ͠ख͍͔͘ͳ͍ ɹɾ࠷దͳϏϯαΠζ༧ଌͷܗʹΑܾͬͯ·Δ. ֤foldͷ࠷దͳϏϯαΠζͷฏۉͱ weighted averageޙͷ༧ଌ࠷దͳͷ͔Βဃ͢Δ
©2020 Wantedly, Inc. Why we used LightGBM? 3. LightGBM ɹɾϏϯαΠζͱweightsͷಉ࣌࠷దԽ͍ͨ͠
ɹɾmeta features͍͍ͨ ɹɾGBDTσʔλΛׂׂͯ͠ޙͷྖҬʹ࠷దͳΛׂΓͯΔख๏ ɹɹˠ ઙ͍߹Ϗϯχϯάͱಉ༷ͷࢄԽ͕Ͱ͖ΔΜ͡Όͳ͍͔ max_depth=2 max_depth=8
©2020 Wantedly, Inc. 4. LightGBM (parameter tuning) ɹɾࢄԽ͢Δ΄Ͳscore͕ྑ͘ͳΔͷͰ, ߏΛۃྗγϯϓϧʹ͍ͨ͠ ɹɾtrainσʔλΛׂͯ͠࠷దͳύϥϝʔλΛݟ͚ͭΔ
ɹɾmax_depthΛҰ൪খ͘͞, lrΛۃྗେ͖ͨ͘͠ํ͕score͕ྑ͘ͳͬͨ Why we used LightGBM?
©2020 Wantedly, Inc. ɾsample weightͷઃఆ ɾhostͷ୯ޠΛΠϯϓοτͷઌ಄ྻʹஔ͘ ɾnew tokenͷՃ ɾBert-base casedΛ͏
ɾtexͷίʔυϒϩοΫΛྗٕͰফڈ Didn’t work for us
©2020 Wantedly, Inc. Discussion: https://www.kaggle.com/c/google-quest-challenge/discussion/129904#742302 Kernel: https://www.kaggle.com/shuheigoda/23th-place-solusion Links
©2020 Wantedly, Inc. https://www.wantedly.com/projects/375150 We are hiring !