Upgrade to Pro — share decks privately, control downloads, hide ads and more …

The Web Conference2020 参加報告会

Sponsored · Ship Features Fearlessly Turn features on and off without deploys. Used by thousands of Ruby developers.

The Web Conference2020 参加報告会

Avatar for Shuhei Goda

Shuhei Goda

April 30, 2020
Tweet

More Decks by Shuhei Goda

Other Decks in Technology

Transcript

  1. ©2020 Wantedly, Inc. 1. Deep Transfer Learning for Search and

    Recommendation ɾݕࡧɾਪનγεςϜʹ͓͚ΔసҠֶशͷԠ༻ͱLinkedinͰͷࣄྫΛ঺հ͍ͯ͠Δ (Tutorial) 2. Clustering and Constructing User Coresets to Accelerate Large- scale Top-K Recommender Systems ɾਪનର৅ͷϢʔβΛᅂ޷ͷ͍ۙ΋ͷಉ࢜ͰΫϥελϦϯά͠, ֤Ϋϥελͷ୅දϕΫτϧΛ
 ɹ ࢖ͬͯۙࣅ࠷ۙ๣୳ࡧΛ͢Δ͜ͱͰਪનγεςϜͷεϐʔυΞοϓΛ࣮ݱ 3. Adaptive Hierarchical Translation-based Sequential Recommendation ɾϢʔβߦಈͷ࣌ܥྻΛߟྀͨ͠Translation-based Reccommendationʹ, ΞΠςϜؒͷ
 ɹ ؔ܎ੑͱ࣌ؒґଘͷuser translation vectorΛՃ͑ͨख๏ΛఏҊ ຊൃදͰ঺հ͢Δ࿦จɾηογϣϯ
  2. ©2020 Wantedly, Inc. Deep Transfer Learning 1. Model Transfer ɹɾsource

    domainsͰͷֶशࡁΈϞσϧΛtarget domainͰ࢖͏ ɹɾfine-tuning (e.g. BERT) ΍ ֤domainͰͷtaskͷmulti-task learning 2. Feature Representation Transfer ɹɾҟͳΔdomainؒͰڞ༗Մೳͳಛ௃Λֶश ɹɾsource domainͰͷֶशࡁΈϞσϧ͔Βͷಛ௃நग़ ΍ domain adaptation 3. Instance Transfer ɹɾsource domain͔Β܇࿅σʔλΛ࣋ͬͯ͘Δ
  3. ©2020 Wantedly, Inc. Deep Transfer Learning for Search and Recommendation

    ݕࡧɾਪનγεςϜͷͲͷ෦෼ͰసҠֶशΛ࢖͏͔ Raw Query Query Understanding User Profile, Activities Raw Document User Understanding Document Understanding Document Retrieval Ranking ←ΑΓྑ͍ཧղͷͨΊʹ, pretrained model
 ͔ΒຒΊࠐΈදݱΛྲྀ༻ (Feature Transfer) ←ຒΊࠐΈۭؒ಺ͰͷީิΞΠςϜͷ֦ு (Feature Transfer) ←ؔ࿈͢ΔαʔϏεͷσʔλ΍ϞσϧΛ
 ྲྀ༻͢Δ(Model Transfer & Instance Transfer)
  4. ©2020 Wantedly, Inc. Case study in Linkedin (1) LinkedinͰ͸ෳ਺ͷϓϩμΫτʹ͓͚ΔϢʔβͷߦಈཤྺ͕औಘͰ͖Δ Job

    Search People Search ଞϢʔβ΁ͷ
 ܨ͕ΓϦΫΤετ ืू΁ͷԠื https://www.linkedin.com/
  5. ©2020 Wantedly, Inc. Case study in Linkedin (2) People Search

    + Careers Job Recommendation ɾ֤υϝΠϯͷਪનλεΫΛղ͍ͯuser, itemͷදݱΛֶश͠, ಛ௃ྔͱͯ͠ར༻ Add embeddings trained with... AUC Lift NDCG@25 Lift Tree Model Baseline
 (no embedding added) 0.00% 0.00% + People Search Embedding (Single-task) 1.25% 0.85% + Multi-task Embedding 1.82% 1.50%
  6. ©2020 Wantedly, Inc. Motivation ྨࣅΞΠςϜͷ୳ࡧͷߴ଎Խ ɾϢʔβʹਪન͢ΔΞΠςϜΛ୳͢ࡍ, PredictionʹؔΘΔ࣮ߦ࣌ؒΛશମతʹ୹͍ͨ͘͠ ɹɾPrediction time =

    Preparation time + Inference time ɹɾطଘͷ୳ࡧΞϧΰϦζϜͰ͸Inferece timeͷ୹ॖʹয఺Λ౰͍ͯͯΔ
 ɾطଘͷख๏Ͱ͸Ϣʔβؒͷؔ܎ੑΛߟྀ͍ͯ͠ͳ͍ͷͰ, ߴ଎Խʹ׆༻͍ͨ͠ ɹɾ࠷ۙ๣୳ࡧ͸೚ҙͷΫΤϦϕΫτϧ͕༩͑ΒΕͨ࣌ʹ͍ۙϕΫτϧΛ୳͢໰୊͕ͩ, 
 ɹɹਪનγεςϜͰ͸ΫΤϦϕΫτϧ͸ϢʔβϕΫτϧͰ΋͋Γ, ϢʔβϕΫτϧ͸ڧ͍
 ɹɹΫϥελϦϯάߏ଄Λ͍࣋ͬͯΔ ɹɾ͍ۙϢʔβ͸ࣅͨؔ৺Λ͍࣋ͬͯΔͨΊ, ୳ࡧ࣌ʹ·ͱΊͯ͠·͑͹ޮ཰తͰ͸?
  7. ©2020 Wantedly, Inc. Framework Overview Preparation Stage: 1. αϒαϯϓϧͨ͠ϢʔβΛΫϥελϦϯά 2.

    άϧʔϓ಺ͷϢʔβΛΧόʔͰ͖ΔΑ͏ͳ
 ෳ਺ͷ୅දϕΫτϧΛϢʔβάϧʔϓຖʹٻΊΔ 3. ΞΠςϜͷ֊૚ܕάϥϑߏ଄Λߏங͠, ɹ֤Ϣʔβάϧʔϓͷ୅දϕΫτϧΛ༻͍ͨ
 ɹgreedyͳάϥϑ୳ࡧʹΑΓ, άϧʔϓຖʹ
 ɹީิΞΠςϜू߹Λऔಘ Prediction Stage: 4. ༧ଌର৅Ϣʔβͷॴଐ͢ΔάϧʔϓΛ୳͠, ɹͦͷάϧʔϓʹରԠ͢ΔީิΞΠςϜू߹ͱ ɹϢʔβϕΫτϧͷ಺ੵΛͱͬͯϥϯΫ෇͚
  8. ©2020 Wantedly, Inc. Motivation ΞΠςϜؒͷؔ࿈ੑͱϢʔβͷߦಈܥྻΛߟྀͨ͠ਪનΛ͍ͨ͠ ɾϢʔβͷߦಈܥྻʹج͍ͮͨਪન (Sequential recommendation) ɹɾe.g. RNN,

    Ϛϧίϑ࿈࠯, CNN, Translated-based Recommendation ɾϢʔβͷߪങܥྻͷཧղʹ͸ΞΠςϜؒͷ૬ิؔ܎ͱ୅ସؔ܎͕ॏཁ ɹɾPCΛߪೖͨ͠௚ޙʹผͷPCΛങ͏͜ͱ͸ͳ͍͕, ͕࣌ؒܦͬͨΒങ͍׵͑ͨ͘ͳΔ
  9. ©2020 Wantedly, Inc. Model Overview Inputs: User Sequences Item Relations

    ิ׬ؔ܎ ୅ସؔ܎ Ouputs: Ϣʔβ͕࣍ʹڵຯΛ࣋ͪͦ͏ͳΞΠςϜ
  10. ©2020 Wantedly, Inc. Item Relations ΞΠςϜ͸ೖΕସΘΓͷස౓͕ߴ͍, ·ͨϢʔβ͔Βߪങ͞ΕΔΞΠςϜ͸εύʔε. ͦ͜ͰΧςΰϦϨϕϧͷؔ܎ΛݟΔ͜ͱʹ͢Δ. ←ҟͳΔΞΠςϜΛ
 ɹߪೖ͍ͯ͠Δ

    ←ΧςΰϦΛݟΔͱ ɹߪങύλʔϯ͕ಉ͡ ΞΠςϜؒͷؔ࿈ੑ → ΧςΰϦϨϕϧͰݟΔ Ϣʔβͷߦಈܥྻ → ΞΠςϜϨϕϧͰݟΔ
  11. ©2020 Wantedly, Inc. Recommendation with HierTrans ←Ϣʔβͷߦಈܥྻ T࣌఺·ͰͷܥྻΛ΋ͱʹ ֤αϒάϥϑ͔Β৘ใΛऔಘ (Head͸GIͱGCΛ


    ݁߹ͤ͞ΔͨΊʹؔ਺) T࣌఺·Ͱͷܥྻͱ
 ΞΠςϜͷؔ܎ੑΛ࢖ͬͯ, ϢʔβͷTranslation vectorΛ ٻΊΔ