$30 off During Our Annual Pro Sale. View Details »
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
AmazonForecast&Personalizeハンズオンセミナー
Search
haradai1262
October 31, 2019
Technology
0
110
AmazonForecast&Personalizeハンズオンセミナー
https://aws-seminar.smktg.jp/public/seminar/view/199
haradai1262
October 31, 2019
Tweet
Share
More Decks by haradai1262
See All by haradai1262
Autodesk AI Lab の 論文紹介 3D何でも勉強会 #1 / Introduction Autodesk Papers
haradai1262
0
880
YouTubeのコメントで女性アイドルを分析 - Music×Analytics Meetup
haradai1262
2
1.7k
DLLAB_オンライン教育サービスにおけるデータ活用方法
haradai1262
0
78
クリエイターのデータを解析するお話
haradai1262
0
92
Other Decks in Technology
See All in Technology
MLflowで始めるプロンプト管理、評価、最適化
databricksjapan
1
260
MariaDB Connector/C のcaching_sha2_passwordプラグインの仕様について
boro1234
0
470
Power of Kiro : あなたの㌔はパワステ搭載ですか?
r3_yamauchi
PRO
0
180
ウェルネス SaaS × AI、1,000万ユーザーを支える 業界特化 AI プロダクト開発への道のり
hacomono
PRO
0
140
【U/day Tokyo 2025】Cygames流 最新スマートフォンゲームの技術設計 〜『Shadowverse: Worlds Beyond』におけるアーキテクチャ再設計の挑戦~
cygames
PRO
2
670
.NET 10の概要
tomokusaba
0
120
re:Invent 2025 ~何をする者であり、どこへいくのか~
tetutetu214
0
220
Reinforcement Fine-tuning 基礎〜実践まで
ch6noota
0
190
ChatGPTで論⽂は読めるのか
spatial_ai_network
11
29k
寫了幾年 Code,然後呢?軟體工程師必須重新認識的 DevOps
cheng_wei_chen
1
1.5k
今年のデータ・ML系アップデートと気になるアプデのご紹介
nayuts
1
500
20251219 OpenIDファウンデーション・ジャパン紹介 / OpenID Foundation Japan Intro
oidfj
0
140
Featured
See All Featured
ピンチをチャンスに:未来をつくるプロダクトロードマップ #pmconf2020
aki_iinuma
128
54k
Responsive Adventures: Dirty Tricks From The Dark Corners of Front-End
smashingmag
254
22k
Performance Is Good for Brains [We Love Speed 2024]
tammyeverts
12
1.3k
Scaling GitHub
holman
464
140k
Practical Orchestrator
shlominoach
190
11k
Speed Design
sergeychernyshev
33
1.4k
What’s in a name? Adding method to the madness
productmarketing
PRO
24
3.8k
The Hidden Cost of Media on the Web [PixelPalooza 2025]
tammyeverts
1
110
Why Our Code Smells
bkeepers
PRO
340
57k
For a Future-Friendly Web
brad_frost
180
10k
Intergalactic Javascript Robots from Outer Space
tanoku
273
27k
10 Git Anti Patterns You Should be Aware of
lemiorhan
PRO
659
61k
Transcript
Amazon Forecastによる オンライン学習サービスにおける演習回数予測 1 Amazon Forecast&Personalizeハンズオンセミナー 株式会社アイデミー ⽵原⼤智 2019/10/31
l ⽵原 ⼤智 l 株式会社アイデミー AI統括 執⾏役員 ü 北海道⼤学にてソーシャルメディア分析に関する研究を専攻 ü
国内⼤⼿SIerに新卒⼊社 ü アイデミーでは教育サービスのログ解析等の研究開発および 先端技術のリサーチに従事 紹介 発表者について 2
紹介 株式会社アイデミーについて 3 l オンラインプログラミング学習サービス「Aidemy」を提供 l データサイエンス等の先端技術に特化 l 環境構築不要でブラウザで実⾏可能
紹介 法⼈向け事業: Aidemy Business l 「AIチーム⽴ち上げ」や「データ・ドリブン⽂化醸成」に向けた組織⽀援 l 導⼊法⼈数は120社以上 l https://business.aidemy.net/
I POC I Aidemy Business Cloud #7, AI! /-7 Business Intensive Plan A Aidemy Engineer Intensive Plan Aidemy Technology AI PoC"2 ( 4+6 $' 1% 0)&5 3.* (
紹介 株式会社アイデミー データサイエンス部 5 研究開発 • 教育サービスのログなどの 社内データの解析による事 業価値創出 •
社内技術の外部発信、論⽂ 執筆など ドメインに特化した 先端技術リサーチ • 化学、材料分野における機 械学習応⽤に関する先端技 術に関するリサーチ • 化学系、材料系メーカーの クライアントへレポート提 供など MLOps事業 • 機械学習モデルの運⽤の⽀ 援に向けたサービス開発 • クライアント企業のPoC後 の運⽤フェーズへの移⾏を ⽀援 l 研究開発やクライアント企業を⽀援するための新規事業を担当
概要 Amazon Forecastによるオンライン学習サービスにおける演習回数予測 6 l Aidemy における演習回数予測とは l Amazon Forecast
による演習回数予測 l Amazon Forecastへ今後期待すること
Aidemy における演習回数予測とは Aidemyにおける演習 7 l 演習画⾯で機械学習のコードを提出するとRUNサーバでの実⾏結果が返される l 演習回数が多いとRUNサーバに負荷が⼤きくなる 演習画⾯ RUNサーバ
Aidemy における演習回数予測とは Aidemyにおける演習 8 l 演習画⾯で機械学習のコードを提出するとRUNサーバでの実⾏結果が返される l 演習回数が多いとRUNサーバに負荷が⼤きくなる 演習画⾯ RUNサーバ
2. コードを提出 4. 実⾏結果を返す 1. コードを⼊⼒ 3. 実⾏
Aidemy における演習回数予測とは 効率的な運⽤のためには演習回数予測が必要 9 l 通常は⼤きめのリソースを⽤意している l 需要に応じて動的に変更できればコストの最適化が図れる 演習回数の例
Aidemy における演習回数予測とは 効率的な運⽤のためには演習回数予測が必要 10 l 通常は⼤きめのリソースを⽤意している l 需要に応じて動的に変更できればコストの最適化が図れる 演習回数の例 負荷が⼤きい
負荷が⼩さい
Aidemy における演習回数予測とは 効率的な運⽤のためには演習回数予測が必要 11 l 通常は⼤きめのリソースを⽤意している l 需要に応じて動的に変更できればコストの最適化が図れる Amazon Forecastによる演習回数予測
によりコストの最適化を図りたい 最適化された コスト 最適化されて いないコスト
概要 Amazon Forecastによるオンライン学習サービスにおける演習回数予測 12 l Aidemy における演習回数予測とは l Amazon Forecast
による演習回数予測 l 利⽤⽅法 l 予測結果について l Amazon Forecastのメリット l 今後やりたいこと l Amazon Forecastへ今後期待すること
Amazon Forecast による演習回数予測 全体像 13 https://aws.amazon.com/jp/forecast/ 出⼒: Boto3(AWS SDK for
Python)による結果取得 出⼒: コンソール(GUI)による可視化 ⼊⼒: 演習回数の履歴データ(CSVファイル)
Amazon Forecast による演習回数予測 利⽤⽅法 14 l コンソール(GUI) l Python(Jupyter Notebook)やAWS
CLI https://docs.aws.amazon.com/ja_jp/forecast/latest/ dg/gs-console.html • GUIで表⽰されるフローに従って容易に学習 可能 • ダッシュボードによる管理画⾯が提供され、 予測結果も確認できる
Amazon Forecast による演習回数予測 利⽤⽅法 15 l コンソール(GUI) l Python(Jupyter Notebook)やAWS
CLI https://github.com/aws-samples/amazon-forecast-samples • Boto3(AWS SDK for Python)を⽤いて Python(Jupyter Notebook)により記述可能 • Pandas等で整形した⼊⼒データを使い、 シームレスに予測モデルが作成可能
Amazon Forecast による演習回数予測 予測結果について 16 l P10,P50,P90の3種類の予測結果が得られる l 10%, 50%,
90% の 3 つの異なる分位数で確率的予測が⾏われる コンソール(GUI)による可視化
Amazon Forecast による演習回数予測 予測結果について 17 l P10,P50,P90の3種類の予測結果が得られる l Aidemyの場合は、予測を⼤きく上回る演習回数になるとサービスが正常動作しなくなる可能性 があるためP90を採⽤する
l そのようなリスクがない場合は、P50やP10を採⽤すると良い 実測値(⻘)と予測値(⾚:P90, 緑:P50, 橙: P10)の⽐較
Amazon Forecast による演習回数予測 Amazon Forecastのメリット 18 l 容易に試すことができる l CSVファイルを⽤意するだけでGUIでも簡単に予測モデルが構築できる
l エンジニア、データサイエンティスト職でなくても使うことができる l (時系列タスクは⾮DSの⽅が間違いやすいタスク) l サービスの費⽤料⾦も安く抑えられる
Amazon Forecast による演習回数予測 Amazon Forecastのメリット 19 l AWSのその他サービスとの連携がしやすい l Boto3(AWS
SDK for Python)も対応されているのでPythonで連携可能 l https://github.com/aws-samples/amazon-forecast-samples (サンプルコード)
Amazon Forecast による演習回数予測 今後やりたいこと 20 l 講座の売り上げなど演習回数以外の予測にも活⽤したい l Related dataとして演習回数予測に関連するその他の系列データを活⽤したい
https://aws.amazon.com/jp/forecast/
概要 Amazon Forecastによるオンライン学習サービスにおける演習回数予測 21 l Aidemy における演習回数予測とは l Amazon Forecast
による演習回数予測 l Amazon Forecastへ今後期待すること
Amazon Forecastへ今後期待すること 再学習について 22 l 再学習を定期的にしたければ l 現状、StepFunctionsなどでワークフローを組むと良い l 少し⼤変…
l 差分学習 l これができれば運⽤の幅が広がりそう
Amazon Forecastへ今後期待すること 運⽤について 23 l ↓など簡単な運⽤もできるくらいもっとマネージドだと嬉しい l 再学習(定期的なモデルの更新) l S3に配置するデータを更新するとモデルも更新される、など
l 通知 l 実測値と予測値を⽐較してアラートをあげる、など l GUIがよりリッチだと⾮エンジニアでも運⽤までできそう
None