Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
Slackbot × RAG で実現する社内情報検索の最適化
Search
howdy39
October 02, 2024
Technology
2
580
Slackbot × RAG で実現する社内情報検索の最適化
howdy39
October 02, 2024
Tweet
Share
More Decks by howdy39
See All by howdy39
AI新時代 情シスが向き合うべきAI活用戦略
howdy39
0
190
GAS x スプレッドシート x Looker Studio を組み合わせたデバイス管理 / DeviceMangent with GAS, SpreadSheet, Looker Studio
howdy39
3
1.6k
ChatGPTを使った 社内アシスタントBOTを作りました / ChatGPT Assistant Bot
howdy39
0
690
WebPagetestで始めるパフォーマンス計測 / Performance measurement starting with WebPagetest
howdy39
4
680
Storybookを用いたVue.js共通コンポーネント開発との戦い / stores-fights-storybook
howdy39
5
8.7k
gas-webpagetestで パフォーマンス計測を始めよう / get-started-measuring-performance-with-gas-webpagetest
howdy39
0
2.5k
Promise
howdy39
1
390
カラーユニバーサルデザイン / color universal design
howdy39
0
950
Geolocation API
howdy39
0
110
Other Decks in Technology
See All in Technology
Modern_Data_Stack最新動向クイズ_買収_AI_激動の2025年_.pdf
sagara
0
200
"複雑なデータ処理 × 静的サイト" を両立させる、楽をするRails運用 / A low-effort Rails workflow that combines “Complex Data Processing × Static Sites”
hogelog
3
1.9k
20201008_ファインディ_品質意識を育てる役目は人かAIか___2_.pdf
findy_eventslides
0
120
多野優介
tanoyusuke
1
420
AI時代だからこそ考える、僕らが本当につくりたいスクラムチーム / A Scrum Team we really want to create in this AI era
takaking22
6
3.4k
20250929_QaaS_vol20
mura_shin
0
110
pprof vs runtime/trace (FlightRecorder)
task4233
0
160
From Prompt to Product @ How to Web 2025, Bucharest, Romania
janwerner
0
120
Green Tea Garbage Collector の今
zchee
PRO
2
390
動画データのポテンシャルを引き出す! Databricks と AI活用への奮闘記(現在進行形)
databricksjapan
0
140
データエンジニアがこの先生きのこるには...?
10xinc
0
440
空間を設計する力を考える / 20251004 Naoki Takahashi
shift_evolve
PRO
3
330
Featured
See All Featured
Practical Tips for Bootstrapping Information Extraction Pipelines
honnibal
PRO
23
1.5k
Put a Button on it: Removing Barriers to Going Fast.
kastner
60
4k
The Web Performance Landscape in 2024 [PerfNow 2024]
tammyeverts
9
850
Fantastic passwords and where to find them - at NoRuKo
philnash
52
3.4k
Refactoring Trust on Your Teams (GOTO; Chicago 2020)
rmw
35
3.2k
Why Our Code Smells
bkeepers
PRO
339
57k
Mobile First: as difficult as doing things right
swwweet
224
10k
KATA
mclloyd
32
15k
Easily Structure & Communicate Ideas using Wireframe
afnizarnur
194
16k
Art, The Web, and Tiny UX
lynnandtonic
303
21k
Rails Girls Zürich Keynote
gr2m
95
14k
Distributed Sagas: A Protocol for Coordinating Microservices
caitiem20
333
22k
Transcript
Slackbot × RAG で実現する社内情報検索 の最適化 STORES 株式会社 中野 達也 1
自己紹介 STORES 株式会社 IT本部 シニアマネージャー 中野 達也@howdy39 SIerやフリーランスでソフトウェアエンジニア →(STORES)フロントエンドエンジニア →(STORES)情シス
2 2
どんな Slackbot をつくってるの? どのような仕組み? RAGのノウハウを紹介 目次 3
どんな Slackbot をつくってるの? 4
Slackで質問を投げかけると社内のドキュメントを読み込んで回答してくれるBOTを作成 5 5
BOTがあることで、ドキュメントを探すコストを下げられる 6 6 BOTがあることで、ドキュメントを探すコストを下げられる ヘルプデスク工数のコスト
どのような仕組み? 7
RAGで実現 8 8 ベクトル情報 を登録・更新 ・削除 Embedding (ベクトル 化) Webhookで
記事情報を送 信 質問する 実行 ベクトルで記 事を検索 Embedding (ベクトル 化) 記事内容を入 れて質問 回答結果を返 す 記事を 作成・更新・ 削除
RAGはフローが大きく2つにわかれるのでどこの話をしているかのイメージが大事 9 9 ベクトル情報 を登録・更新 ・削除 Embedding (ベクトル 化) Webhookで
記事情報を送 信 質問する 実行 ベクトルで記 事を検索 Embedding (ベクトル 化) 記事内容を入 れて質問 回答結果を返 す 記事を 作成・更新・ 削除 ベクトルDBへ格納 ベクトルDBから検索
「ベクトルDBへ格納」の詳細 10 10
「ベクトルDBから検索」の詳細 11 11
RAGのノウハウを紹介 12
ノウハウその1「初期データの反映」と「差分データの反映」の設計が大事 13 13 差分データの反映 初期データの反映 インポートするだけなので 簡単 難しい Webhookがあればいいが ない場合にどうするかの設
計が大事
ノウハウその2 マークダウンから無駄なデータを削ぎ落として登録 14 14 ここ!
ノウハウその2 マークダウンから無駄なデータを削ぎ落として登録 | コード例 15 15 imgタグを除去 brタグを削る 4つ以上の罫線の ”-”,
“=”, “〜” を3つに減らす 太字 “**” を除去 2つ以上のスペースを1つ に減らす 複数の改行を1つに減らす
記事の内容にもよるが 適当な記事をピックアップしたところ 文字数が 39,219→20,025 に削減 ノウハウその2 マークダウンから無駄なデータを削ぎ落として登録 | 削減効果 16
16 500文字ずつチャンクしたとしたら 分割数が80→40まで削減できた
ノウハウその3 データを収集するのが大事 17 17 ここ
ノウハウその3 データを収集するのが大事 | 例 18 18 これ
ノウハウその3 データを収集するのが大事 | 可視化 19 19 フィードバック メッセージを返却 (ランダム) フィードバック結果
のログをスプレッド シートに残す 利用状況とフィード バックをLooker Studioで可視化
ノウハウその4 Rerankを必ず入れる 20 20 ここ
ノウハウその4 Rerankを必ず入れる | チャンクを多く取ってRerankで絞る 21 21 100チャンクを Rerankして上位10 チャンクを取得 ※
類似度:高 topN=100 のチャンクを取得 ※ 類似度:低
Slackbot x RAG 環境を作り従業員の業務効率を向上させよう (ついでに情シスのヘルプデスク工数を削減する) RAGの全体像(登録フロー, 検索フロー)イメージしながら設計・ 実装・改善をしていくとよい まとめ 22
22
ご清聴ありがとうございました! 23