Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
非同期タスクキューを使って業務を自動化しまくった話
Search
Hiroshi Sano
December 15, 2023
Technology
0
1.4k
非同期タスクキューを使って業務を自動化しまくった話
はんなりプログラミング: 1年の締めくくり!2023年にチャレンジしたことのLT祭
Hiroshi Sano
December 15, 2023
Tweet
Share
More Decks by Hiroshi Sano
See All by Hiroshi Sano
調整さんの調整結果をカレンダーへ登録するGPTsを作った話
hrsano645
1
650
Gmail APIでメールを扱おうとしたら結構辛かった話
hrsano645
0
500
非同期タスクキューを使って業務効率化した話
hrsano645
1
1.4k
ご当地グルメマップを作ろう
hrsano645
2
1.3k
Python駿河 #28 富士宮焼きそばを食べ歩きしたいのでマップを作った話
hrsano645
0
130
Python駿河 #1 MicroPythonを使ってみよう!
hrsano645
0
1.1k
IoTLT vol.51 お風呂IoT Mk2作りました
hrsano645
1
1.9k
IoTLT vol.46 蛇口IoTに挑戦した記録
hrsano645
1
970
PWA入門してみた話(iPad Proで!)
hrsano645
1
1k
Other Decks in Technology
See All in Technology
ソフトウェアエンジニアとAIエンジニアの役割分担についてのある事例
kworkdev
PRO
1
320
100以上の新規コネクタ提供を可能にしたアーキテクチャ
ooyukioo
0
290
MySQLとPostgreSQLのコレーション / Collation of MySQL and PostgreSQL
tmtms
1
1.4k
ESXi のAIOps だ!2025冬
unnowataru
0
440
2025年のデザインシステムとAI 活用を振り返る
leveragestech
0
470
まだ間に合う! Agentic AI on AWSの現在地をやさしく一挙おさらい
minorun365
19
3.1k
戰略轉變:從建構 AI 代理人到發展可擴展的技能生態系統
appleboy
0
150
Oracle Database@Google Cloud:サービス概要のご紹介
oracle4engineer
PRO
1
780
Bedrock AgentCore Memoryの新機能 (Episode) を試してみた / try Bedrock AgentCore Memory Episodic functionarity
hoshi7_n
2
2.1k
TED_modeki_共創ラボ_20251203.pdf
iotcomjpadmin
0
170
Amazon Bedrock Knowledge Bases × メタデータ活用で実現する検証可能な RAG 設計
tomoaki25
6
2.6k
Claude Skillsの テスト業務での活用事例
moritamasami
1
120
Featured
See All Featured
Amusing Abliteration
ianozsvald
0
76
Save Time (by Creating Custom Rails Generators)
garrettdimon
PRO
32
1.9k
Agile Actions for Facilitating Distributed Teams - ADO2019
mkilby
0
98
SEO for Brand Visibility & Recognition
aleyda
0
4.1k
What’s in a name? Adding method to the madness
productmarketing
PRO
24
3.8k
Kristin Tynski - Automating Marketing Tasks With AI
techseoconnect
PRO
0
110
Building Applications with DynamoDB
mza
96
6.9k
The Curse of the Amulet
leimatthew05
0
5.9k
Deep Space Network (abreviated)
tonyrice
0
27
エンジニアに許された特別な時間の終わり
watany
106
220k
Facilitating Awesome Meetings
lara
57
6.7k
How to Think Like a Performance Engineer
csswizardry
28
2.4k
Transcript
非同期タスクキューを使って業務を自動化しまくった話 はんなりプログラミング: 1年の締めくくり!2023年にチャレンジしたことのLT祭 2023-12-15 佐野 浩士 @hrsano645 1
お前誰よ / Self Introduction 佐野 浩士(Hiroshi Sano)@hrs_sano645 : 静岡県富士市 :
株式会社佐野設計事務所 CEO : PyCon mini Shizuoka Stuff / Shizuoka.py / Unagi.py / Python駿河 CivicTech, Startup Weekend Organizer Hobby: Camp ,DIY ,IoT 2
3
2023年の本業の話 4
目標: 業務の効率化を限界まで進める 5
業務自動化ガッツリやりました 依頼ベースの案件業務 今まではそれほど多くなかったが今年になって急激に増える 人力でやっていては追いつかなそうでやばい 人が必要な部分以外人力でやるのを止める! -> 止めることに成功した!! 6
こんな絵を想像して 7
業務タスク自動化サービスの構成 8
どんなことを効率化? 自動生成 依頼受注(メール)→ボイラープレートツールで作業プロジェクト フォルダーを生成 スケジュール管理→Googleスプレッドシート連携 会計サービスと連携して見積書/請求書生成(書類作成) 依頼企業側のシステム連携: WEBスクレイピング タスク操作をChatOps Google
Chatでチャットボット作成 過去の依頼からサマリー情報のデータベース化: (現在取り組み中) 始まりと終わりを自動化することで、中身の作業に集中できるような体制 9
自動生成の部分を非同期タスクキューを使って作業させています 10
なんで非同期にしたの? これらは重い処理: ファイル操作、APIアクセス -> I/Oバウンド処理 組み合わせると数秒ではなく数十秒〜分単位の処理 結果が返ってくるタイミングはその時次第 同期処理でやると、処理が終わるまで待たされる -> ブロッキング処理
チャットボット側がロックされてしまう->応答が返せない 基本チャットボットは非同期前提 11
Google Chatの場合 「同期的に応答するには、Chat アプリが 30 秒以内に応答し、その応答をインタラクシ ョンが発生したスペースに投稿する必要があります。それ以外の場合は、Chat アプリは 非同期で応答できます。」 https://developers.google.com/chat/api/guides/message-formats?hl=ja#sync-
response (Slackの3秒よりも全然緩いけど、非同期前提な様子) 12
非同期とは 同期処理と非同期処理の違い: 処理のオフロードと並列処理が可能。処理の待ち時間を有効活用できる チャットボットのために非同期処理を使うことになる: これが結局制約あるため ノンブロッキング処理: 処理が終わるまで待たされない(チャットの場合、応答が素早く 返せる) 13
Pythonでの非同期処理の選択肢 標準ライブラリ:(並列)threading,(並列)multiprocessing, (非同期)asyncio,(並列?3.12から)sub-interpreters メッセージキュー活用: celery, rq, pyzmq(ZeroMQ) クラウドのメッセージング: Cloud Pub/Sub(イベントベースで
etc... 14
今回はRQ(python-rq)を使いました python-rq: https://python-rq.org/ 以下の3つの要素で構成される アプリ: タスク発行→キューへ入れる→ワーカーから処理結果を受け取る ワーカー: タスクの処理を行う redis: アプリとワーカーの間に入りキューとして利用する
15
非同期タスクのざっくりイメージ 16
なぜRQを選んだのか ドキュメント見ていたら利用しやすいシンプルさが良かった asyncioと悩んだ -> RQがシンプルにできそうだった celeryと悩んだ -> celeryを使うほどの規模ではなかったと思う ※ I/Oバウンズ処理はasyncio,
multiprocessingは制限にならないので、 この選択肢がベストとは限らない(速度とか) ※ redisの扱いに慣れたくて使いたかったという意味も バウンドとは制限という意味 17
注意 RQはWindowsは非対応 WSLなら動かせる -> https://python-rq.org/docs/#limitations 今回はdockerで動かす例です チャットボットも動かすのでどうせならLinux系がお手軽 18
ということで、ちょっぱやでDocckerで用意する場合の例 参考: Python で分散タスクキュー (RQ 編) #Python - Qiita @hoto17296
19
Dockerfile FROM python:3.11 RUN pip install rq 20
compose.yml version: '3' services: redis: image: redis worker: build: .
depends_on: - redis environment: RQ_REDIS_URL: redis://redis command: rq worker volumes: - .:/app working_dir: /app app: build: . depends_on: - redis - worker environment: RQ_REDIS_URL: redis://redis command: python app.py volumes: - .:/app working_dir: /app 21
簡単なサンプル: printしてみる tasks.py import logging logger = logging.getLogger(__name__) def add(a,
b): logger.debug("{} + {} = {}".format(a, b, a + b)) return a + b 22
app.py import os from time import sleep import redis from
rq import Queue from tasks import add q = Queue(connection=redis.from_url(os.environ.get("RQ_REDIS_URL"))) # 10 個のタスクの実行をキューに投げる tasks = [q.enqueue(add, args=(i, 1)) for i in range(10)] # タスク実行が完了するまで少し待つ sleep(1) # 結果を出力する print([task.result for task in tasks]) 23
実行 # シングルワーカー $ docker-compose up # マルチワーカー: 4 つのワーカーを起動
$ docker-compose up --scale worker=4 ## ログは別途ファイルでみせます 24
dockerで動かす時 RQはredis(キュー)へタスクを渡すときはpickleを使ってる ワーカー側でもpickleで渡されたオブジェクトが理解できないといけない -> ワーカー側にも同じライブラリをインストールする必要がある 手っ取り早い方法として タスク側もワーカー側も同じ環境=Dockerfileを使う コード参照や利用するボリュームも同じ箇所を参照すると楽 タスクとワーカーを同時に動かすならcomposeが便利 25
まとめ 膨大な退屈なこと手作業は間違えるので自動化しよう 自動化は重い処理をよく扱う->非同期前提で考える 非同期タスクキューを使うことで、重い処理を任せられ 自動化の幅や連携方法が広がる(はず Google Chatアプリの話はまたどこかで〜 26
参考 メッセージキュー - Wikipedia python-rq 【Pythonで高速化】I / Oバウンドとか並列処理とかマルチプロセスとかってなんぞや #Python -
Qiita docker利用時の参考: Python で分散タスクキュー (RQ 編) #Python - Qiita Python3.12で新たにサポートされたsub-interpretersの紹介 | gihyo.jp サンプルコード https://github.com/hrsano645/exam-python-rq-by-docker 27
Google Chatと合わせる時 チャットボット側で操作をする -> タスクをキューに入れる チャットボット側に応答をする ワーカー側でタスクを実行する ワーカー側でチャット側に非同期で応答を返す Google ChatならGoogle
Chat REST APIで非同期応答できる 28
29