Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
ホテル客室販売における時系列クラスタリングの活用
Search
Ikuya Murasato
November 12, 2021
Business
0
500
ホテル客室販売における時系列クラスタリングの活用
2021/11/12(金)に開催したExploratory データサイエンス勉強会#21の株式会社からくさホテルズ様のご登壇資料です。
Ikuya Murasato
November 12, 2021
Tweet
Share
More Decks by Ikuya Murasato
See All by Ikuya Murasato
トピックモデル分析を活用した問合せ業務の効率化
ikuyam
1
200
回帰分析の活用による新商品の販売力予測
ikuyam
0
140
生存分析モデルを利用したLineのブロック要因分析
ikuyam
0
90
自動車トラブルと気象条件などの探索的データ分析
ikuyam
0
61
データサイエンス「も」使えるチェンジメーカー輩出への挑戦
ikuyam
0
340
ExploratoryとRによる全学データサイエンス教育
ikuyam
0
460
エンゲージメント向上のための人事制度改革 - 管理部門におけるExploratoryの活用
ikuyam
0
1.5k
「学ぶ」分析技術から「使う」分析技術へ - Exploratoryによるドリル演習
ikuyam
0
340
データサイエンス入門教育の現場から - 46歳新任教員2年間の苦闘
ikuyam
0
430
Other Decks in Business
See All in Business
enechain company deck
enechain
PRO
8
94k
Sales Marker Culture book
salesmarker
PRO
6
24k
デジタルで創れ!未来の東京消防庁
tokyo_metropolitan_gov_digital_hr
1
310
Works Human Intelligence
whisaiyo
1
79k
mov 会社紹介スライド
mov
0
660
ストーリーテリングでチームに”熱"を伝える🔥
inagakikay
1
10k
NEXERA inc. | Company Deck
nexera
0
7.7k
Sasuke Financial Lab_会社説明資料
mayuko_nishida
1
5k
pmconf2024 意思決定の質とスピードを上げるドキュメントの極意
issei123
1
6.6k
AWS の生成 AI 最前線 : 顧客起点のイノベーション
icoxfog417
PRO
0
910
署内デジタルインフォボードの開発
tokyo_metropolitan_gov_digital_hr
0
320
ネクストビートコーポレートガイド/corporate-guide
nextbeat
3
77k
Featured
See All Featured
For a Future-Friendly Web
brad_frost
175
9.4k
StorybookのUI Testing Handbookを読んだ
zakiyama
27
5.3k
A designer walks into a library…
pauljervisheath
204
24k
Bootstrapping a Software Product
garrettdimon
PRO
305
110k
Building an army of robots
kneath
302
44k
The Art of Delivering Value - GDevCon NA Keynote
reverentgeek
8
1.2k
A better future with KSS
kneath
238
17k
CSS Pre-Processors: Stylus, Less & Sass
bermonpainter
356
29k
Thoughts on Productivity
jonyablonski
67
4.4k
Save Time (by Creating Custom Rails Generators)
garrettdimon
PRO
28
900
Into the Great Unknown - MozCon
thekraken
33
1.5k
Rails Girls Zürich Keynote
gr2m
94
13k
Transcript
2021年11月12日 ホテル客室販売における時系列クラスタリングの活用
マスター タイトルの書式設定 2 自己紹介 • 氏名:宇津井 篤(うつい あつし) • 所属:株式会社からくさホテルズ
• 業務:ホテル運営、特に客室販売についての戦略立案・戦術実行
マスター タイトルの書式設定 3 からくさホテルについて • 自社およびグループ会社によるワンストップ運営(ザイマックスグループ) ▻ ホテル運営・客室清掃・設備メンテナンス・リネンサプライ・シャトルバス運営 • 観光需要をターゲットにした宿泊特化型ホテル(2016年開業)
▻ ツインルームを中心とした客室構成・コネクティングルーム等家族連れ対応も充実
マスター タイトルの書式設定 4 AGENDA 1. ホテル客室販売業務の背景 2. これまでの取組みと課題 3. データ分析手法:時系列クラスタリング
4. 得られたインサイト 5. まとめ
マスター タイトルの書式設定 5 ホテル客室販売業務の目的:ホテルの収益を最大化すること • 考えること・やるべきことは多岐に渡る… 店頭プラン造成 1. ホテル客室販売業務の背景 Off-line
Online to C to B 団体営業 海外AGT営業 PR・広報 SNS 国内AGT 店頭販売 OTA プラン造成 OTA販売価格 団体料金設定 店頭価格設定 ホールセール 料金設定 モニタリング 予算設定 収支予測 情報収集 プロモーション 会員優待 CRM 法人営業
マスター タイトルの書式設定 6 ホテル客室販売業務の目的:ホテルの収益を最大化すること • 考えること・やるべきことは多岐に渡る… • 値付け:『いつ・いくらで・何室売るのか?』が 重要 且つ
難しい …とされている。 ▻ 経験則に基づく・共有化しにくい面があり、属人化しがち。 ⇒ データサイエンスによって「値付け」を組織的ノウハウ・形式知化・見える化したい 店頭プラン造成 1. ホテル客室販売業務の背景 Off-line Online to C to B 団体営業 海外AGT営業 PR・広報 SNS 国内AGT 店頭販売 OTA プラン造成 OTA販売価格 団体料金設定 店頭価格設定 ホールセール 料金設定 モニタリング 予算設定 収支予測 情報収集 プロモーション 会員優待 CRM 法人営業
マスター タイトルの書式設定 7 小売 ホテル 在庫 商品 客室 需要が高いとき 供給を増やして
売上UP 総客室数よりも 多く売ることはできない 需要が低いとき 供給を減らす 在庫を繰越す 在庫を繰越すことが できない 値付けの背景 …在庫の特殊性 1. ホテル客室販売業務の背景
マスター タイトルの書式設定 8 値付けの背景 …在庫の特殊性 ・ 需要が高いとき ▻ 小売は供給を増やして販売数量増加による売上UPを図ることができる。 ▻
ホテルはもっている客室以上に販売数量を増やすことができない。 小売 ホテル 在庫 商品 客室 需要が高いとき 供給を増やして 売上UP 総客室数よりも 多く売ることはできない 需要が低いとき 供給を減らす 在庫を繰越す 在庫を繰越すことが できない 1. ホテル客室販売業務の背景
マスター タイトルの書式設定 9 値付けの背景 …在庫の特殊性 ・ 需要が低いとき ▻ 小売は供給減によるコストDOWNや、在庫を繰越して収益化することができる。 ▻
ホテルは空室を翌日に繰越すことができない。…余剰在庫は収益化できない。 小売 ホテル 在庫 商品 客室 需要が高いとき 供給を増やして 売上UP 総客室数よりも 多く売ることはできない 需要が低いとき 供給を減らす 在庫を繰越す 在庫を繰越すことが できない 1. ホテル客室販売業務の背景
マスター タイトルの書式設定 10 値付けの背景 …在庫の特殊性 • 収益を最大化するために: ⇒ 余剰在庫を生まずに・なるべく高く売る ように販売価格をコントロールしたい。
小売 ホテル 在庫 商品 客室 需要が高いとき 供給を増やして 売上UP 総客室数よりも 多く売ることはできない 需要が低いとき 供給を減らす 在庫を繰越す 在庫を繰越すことが できない 1. ホテル客室販売業務の背景
マスター タイトルの書式設定 11 AGENDA 1. ホテル客室販売業務の背景 2. これまでの取組みと課題 3. データ分析手法:時系列クラスタリング
4. 得られたインサイト 5. まとめ
マスター タイトルの書式設定 12 2. これまでの取組みと課題 これまでの試み • 日付・リードタイム毎に予約の積上げペースを可視化 …ブッキングカーブを作成
マスター タイトルの書式設定 13 2. これまでの取組みと課題 これまでの試み • 日付・リードタイム毎に予約の積上げペースを可視化 …ブッキングカーブを作成 ▻
今の販売価格でいいのか?を毎日観察&軌道修正 断続的に値下げを行ってきたが、 予約積上げペースが上がってきた。 …ように見える。 販売価格を上げた方がいいかも?
マスター タイトルの書式設定 14 ブッキングカーブだけを見ていても、その時点の状態を適切に評価することが難しい… これまでの試み • 日付・リードタイム毎に予約の積上げペースを可視化 …ブッキングカーブを作成 ▻ 今の販売価格でいいのか?を毎日観察&軌道修正
2. これまでの取組みと課題 余剰在庫が発生 価格ピークから大幅な値下げ
マスター タイトルの書式設定 15 AGENDA 1. ホテル客室販売業務の背景 2. これまでの取組みと課題 3. データ分析手法:時系列クラスタリング
4. 得られたインサイト 5. まとめ
マスター タイトルの書式設定 16 課題:その時点でのブッキングカーブを見ても、積上げペースの良し悪しが分からない。 仮説:時系列クラスタリングによって過去のブッキングカーブを類型化 > 未来の期待値をはかる指標として、積上げペースの評価に使うことができるのでは? 3. データ分析手法:時系列クラスタリング
マスター タイトルの書式設定 17 課題:その時点でのブッキングカーブを見ても、積上げペースの良し悪しが分からない。 仮説:時系列クラスタリングによって過去のブッキングカーブを類型化 > 未来の期待値をはかる指標として、積上げペースの評価に使うことができるのでは? 3. データ分析手法:時系列クラスタリング 良い例
悪い例 普通の例
マスター タイトルの書式設定 18 • 宿泊日毎・リードタイム毎の予約積上げデータを基に時系列クラスタリングを実施 3. データ分析手法:時系列クラスタリング 宿泊日 ↓ 予約室数
↓ リードタイム ↓
マスター タイトルの書式設定 19 • 宿泊日毎・リードタイム毎の予約積上げデータを基に時系列クラスタリングを実施 3. データ分析手法:時系列クラスタリング 必要なデータ ①時間 ②分類するカテゴリ
③時系列の値 ①時間 =リードタイム ②カテゴリ =宿泊日 ③値 =予約室数
マスター タイトルの書式設定 20 • 宿泊日毎・リードタイム毎の予約積上げデータを基に時系列クラスタリングを実施 3. データ分析手法:時系列クラスタリング ステップ > アナリティクス
> 時系列クラスタリング 宿泊日→ リードタイム→ 予約室数→
マスター タイトルの書式設定 21 • 365日分のブッキングカーブを3つのクラスターに分類 3. データ分析手法:時系列クラスタリング
マスター タイトルの書式設定 22 • 365日分のブッキングカーブを3つのクラスターに分類 3. データ分析手法:時系列クラスタリング
マスター タイトルの書式設定 23 • 365日分のブッキングカーブを3つのクラスターに分類 3. データ分析手法:時系列クラスタリング
マスター タイトルの書式設定 24 • 365日分のブッキングカーブを3つのクラスターに分類 3. データ分析手法:時系列クラスタリング リードタイム毎の予約数推移 リードタイム毎の売上推移 クラスター①
クラスター② クラスター③
マスター タイトルの書式設定 25 AGENDA 1. ホテル客室販売業務の背景 2. これまでの取組みと課題 3. データ分析手法:時系列クラスタリング
4. 得られたインサイト 5. まとめ
マスター タイトルの書式設定 26 4. 得られたインサイト • 3つのクラスター中心線を現在のブッキングカーブと重ね合せ +
マスター タイトルの書式設定 27 4. 得られたインサイト • 3つのクラスター中心線を現在のブッキングカーブと重ね合せ コロナ禍の今、過去のブッキングカーブとの乖離が大きくあまり参考にならない…。
マスター タイトルの書式設定 28 4. 得られたインサイト • 3つのクラスター中心線を現在のブッキングカーブと重ね合せ コロナ禍の今、過去のブッキングカーブとの乖離が大きくあまり参考にならない…。 ⇒パラメータを変更して、クラスタリングする対象の日付を変更
マスター タイトルの書式設定 29 4. 得られたインサイト • 3つのクラスター中心線を現在のブッキングカーブと重ね合せ 現在と前提条件の近いブッキングカーブを指標にすることができる。
マスター タイトルの書式設定 30 AGENDA 1. ホテル客室販売業務の背景 2. これまでの取組みと課題 3. データ分析手法:時系列クラスタリング
4. 得られたインサイト 5. まとめ
マスター タイトルの書式設定 31 5. まとめ • 客室販売業務において、時系列クラスタリングの結果を活用することができそう。 ▻ データを更新してクラスタリングの対象日付を変更することで、汎用度高く利用できる。 •
時系列クラスタリングで類型化しているのは、過去の販売行動の結果数値。 ▻ 必ずしも正解を示唆するものではない、という点は留意する必要アリ。 ブッキングカーブを見ながら手探りで行っていた『値付け』に、ひとつの判断指標を加えることができた。