Upgrade to PRO for Only $50/Year—Limited-Time Offer! 🔥
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
Amazon SageMaker Canvasで学ぶ機械学習モデルの構築
Search
iret.kumoben
March 19, 2024
Technology
0
3.6k
Amazon SageMaker Canvasで学ぶ機械学習モデルの構築
下記、勉強会での資料です。
https://youtu.be/EVdUQx4jCkE
iret.kumoben
March 19, 2024
Tweet
Share
More Decks by iret.kumoben
See All by iret.kumoben
第180回 雲勉 Abuse report の調査・確認方法について
iret
0
47
第179回 雲勉 AI を活用したサポートデスク業務の改善
iret
0
36
第178回 雲勉 Amazon EKSをオンプレで! Amazon EKS Anywhere 実践構築ガイド
iret
1
56
第177回 雲勉 IdP 移行を楽に!Amazon Cognito でアプリへの影響をゼロにするアイデア
iret
0
60
第176回 雲勉 VPC 間サービス接続を考える!Private Service Connect 入門
iret
0
46
第175回 雲勉 Amazon ECS入門:コンテナ実行の基本を学ぶ
iret
0
78
第174回 雲勉 Google Agentspace × ADK Vertex AI Agent Engineにデプロイしたエージェントを呼び出す
iret
0
120
第173回 雲勉 ノーコードで生成 AI アプリを構築!Google Cloud AI Applications(旧 Vertex AI Agent Builder)入門
iret
0
95
第170回 雲勉 Lyria が切り拓く音楽制作の未来
iret
1
50
Other Decks in Technology
See All in Technology
「Managed Instances」と「durable functions」で広がるAWS Lambdaのユースケース
lamaglama39
0
330
re:Invent2025 3つの Frontier Agents を紹介 / introducing-3-frontier-agents
tomoki10
0
230
【U/day Tokyo 2025】Cygames流 最新スマートフォンゲームの技術設計 〜『Shadowverse: Worlds Beyond』におけるアーキテクチャ再設計の挑戦~
cygames
PRO
2
430
LLM-Readyなデータ基盤を高速に構築するためのアジャイルデータモデリングの実例
kashira
0
260
評価駆動開発で不確実性を制御する - MLflow 3が支えるエージェント開発
databricksjapan
1
210
S3を正しく理解するための内部構造の読解
nrinetcom
PRO
2
120
チーリンについて
hirotomotaguchi
6
2k
re:Invent2025 コンテナ系アップデート振り返り(+CloudWatchログのアップデート紹介)
masukawa
0
390
ActiveJobUpdates
igaiga
1
130
Oracle Cloud Infrastructure IaaS 新機能アップデート 2025/09 - 2025/11
oracle4engineer
PRO
0
160
Lambdaの常識はどう変わる?!re:Invent 2025 before after
iwatatomoya
1
610
文字列の並び順 / Unicode Collation
tmtms
3
600
Featured
See All Featured
Optimising Largest Contentful Paint
csswizardry
37
3.5k
Embracing the Ebb and Flow
colly
88
4.9k
Dealing with People You Can't Stand - Big Design 2015
cassininazir
367
27k
How GitHub (no longer) Works
holman
316
140k
Fight the Zombie Pattern Library - RWD Summit 2016
marcelosomers
234
17k
Mobile First: as difficult as doing things right
swwweet
225
10k
KATA
mclloyd
PRO
33
15k
The Hidden Cost of Media on the Web [PixelPalooza 2025]
tammyeverts
1
100
RailsConf & Balkan Ruby 2019: The Past, Present, and Future of Rails at GitHub
eileencodes
141
34k
jQuery: Nuts, Bolts and Bling
dougneiner
65
8.3k
Building Adaptive Systems
keathley
44
2.9k
Large-scale JavaScript Application Architecture
addyosmani
515
110k
Transcript
第1回 雲勉LT⼤会 Amazon SageMaker Canvas で学ぶ機械学習モデルの構築
⾃⼰紹介 2 前野 佑宜(まえの ゆうき) • 第四開発事業部 第三開発セクション第三開発Eグループ所属 • 23新卒でアイレット⼊社→今年の4⽉で⼊社1年
• ⼤学時代は経済学部で、全くの未経験からIT業界に⾶び込んだ • 現在は、主にバックエンド開発に従事 初めてのLTで⾄らない点もありますが 温かい⽬で⾒守って頂けますと幸いです︕
アジェンダ 3 テーマ紹介 「SageMaker Canvasで学ぶ機械学習モデルの構築」 AI Package Tracker hands-on labでの
ハンズオンラボ まとめ
本⽇のゴール 4 極⼒難しい⾔葉は使わないように、 分かりやすい⾔葉でお伝えします︕ AWSの「機械学習」サービスの 学習の障壁を下げること 私⾃⾝もまだまだ機械学習初学者なので、 初⼼者⽬線で感じたこともお伝えできればと思います︕
1. テーマ紹介 5
1.テーマ紹介 6 Amazon SageMaker とは︖ ・機械学習モデルを構築、トレーニング、デプロイできるサービス Amazon SageMaker Canvas とは︖
・ノーコードで機械学習モデルをデプロイできるSageMakerの⼀機能 ・↑機械学習=「難易度が⾼くとっつきにくい」という ⼀般的なイメージを払拭
1.テーマ紹介 7 BedrockとSageMaker、何が違うの︖ ・どちらも基盤モデルを⼿軽に使うことのできるサービス ・違いを下記の表にまとめてみました Amazon SageMaker (正確にはSageMaker JumpStartという機能) Amazon
Bedrock 利⽤⽅法 推論エンドポイント経由 (ユーザー⾃⾝でエンドポイントを⽴てる) Bedrock API経由 (Bedrockのサービス側に 基盤モデルがホストされている) お⼿軽さ ◦ (⾃⾝でインスタンスタイプの 設定はする必要がある) ◎ カスタマイズ性 ◎ ◦
2. AI Package Tracker hands-on labでの ハンズオン 8
2.AI Package Tracker hands-on labでのハンズオン 9 AI Package Tracker hands-on
lab を使⽤しました • AWSアカウント不要で試すことのできるハンズオンラボ (https://ai.awsplayer.com/labs/amazonsagemakercanvas) • AWS Builder ID(無料) を別途作成する必要はある 初期画⾯はこんな感じ ★事前準備不要 →データはすでに準備されている
2.AI Package Tracker hands-on labでのハンズオン 10 注意点 • 時間の都合上、要点をかいつまんでお伝えすることになります🙇 •
詳細はiret.mediaにも(https://iret.media/94166)公開しておりますのでご覧くださ い︕ • ハンズオンについては確か制限時間(8h?)があった気がするのでご注意を︕
2.AI Package Tracker hands-on labでのハンズオン 11 AI Packager Tracker hands-onの内容をざっくり要約
• 荷物の配送状況がOntime(時間通り)なのかDelayed(遅れている)なのかの要因を、 モデルを⽤いて推測 On time Delayed
2.AI Package Tracker hands-on labでのハンズオン 12 全体像
2.AI Package Tracker hands-on labでのハンズオン 13 ①データのインポート+データセットの作成
2.AI Package Tracker hands-on labでのハンズオン 14 ①データのインポート+データセットの作成 今回は、事前に準備されているcsvデータを使⽤します
2.AI Package Tracker hands-on labでのハンズオン 15 CSVファイルの中⾝を詳しくみる →2018年冬の3ヶ⽉間にアメリカで取られた45000件のデータ 郵便番号・配送量・その時の気象データ・配送遅延の状況が ⼊っている
2.AI Package Tracker hands-on labでのハンズオン 16 ①データセット作成後、Preview Modelで分析の正確さが確認できる
2.AI Package Tracker hands-on labでのハンズオン 17 ②ビルド(Build)
2.AI Package Tracker hands-on labでのハンズオン 18 モデルの正確性 遅延の要因 ③分析(Analyze)
2.AI Package Tracker hands-on labでのハンズオン 19 パラメータ 予測結果 寄与度 ④予測(Predict)
2.AI Package Tracker hands-on labでのハンズオン 20 ④予測(Predict) ⾚:変更箇所 緑:寄与度が⾼いカラム 試しにパラメータを変えてみるとどうなるか︖︖
3. まとめ 21
3.まとめ 22 SageMaker Canvasを使ってみての感想や気づき 機械学習の深い知識がなくても 簡単にGUI上でモデルを作成し、分析ができるのは便利 とはいえ、多少は統計の基礎の部分の知識の理解は必要な気がした ハンズオンラボ→「とりあえず軽く触ってみたい」⼈にはお勧めです︕ 機械学習はあくまでも課題解決の⼿段にすぎない →「機械学習を使って何がしたいのか」を明確にするのかが⼤事︕
参考⽂献 23 ⼤規模⾔語モデル (LLM) ⼊⾨ | AWS AI Week for
Developers https://www.youtube.com/watch?v=jnmxMUqdV_0&list=PLzWGOASvSx6GpTyGBB6rLapnY9N_xrBKW&index=4 AWS Builders Online Series ノーコードではじめる 機械学習 Amazon SageMaker Canvas の 使いどころ https://pages.awscloud.com/rs/112-TZM-766/images/BOS18_T2-1_AWS-Builders-Online-Series_2023-Q1_Presentation- Deck.pdf
動画URL 24 n 動画タイトル 第1回 雲勉LT⼤会 AWSをテーマに社内でLT⼤会をやってみた n 動画URL https://youtu.be/EVdUQx4jCkE
ご清聴ありがとうございました︕ 25