Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
Amazon SageMaker Canvasで学ぶ機械学習モデルの構築
Search
iret.kumoben
March 19, 2024
Technology
0
1.6k
Amazon SageMaker Canvasで学ぶ機械学習モデルの構築
下記、勉強会での資料です。
https://youtu.be/EVdUQx4jCkE
iret.kumoben
March 19, 2024
Tweet
Share
More Decks by iret.kumoben
See All by iret.kumoben
第154回 雲勉 AWS Codeシリーズ盛り上げ隊 ~ Codeシリーズは砕けない ~
iret
0
14
第153回 雲勉 トラシューが秒で終わる新機能 Amazon Q Developer operational investigations
iret
0
45
第150回 雲勉 AWS AppSyncではじめるGraphQL体験
iret
0
41
第151回 雲勉 プロジェクトのドキュメントにおける課題をAmazon Bedrockで解決してみる
iret
0
57
第152回 雲勉 シームレスなマルチリージョンへの移行と検討 ~Amazon EKSとAWS Global Acceleratorを使用した環境〜
iret
0
48
第149回 雲勉 AWS ベストプラクティスの最新と実際 AWS Well-Architected
iret
0
82
第148回 雲勉 Web アプリケーションセキュリティ
iret
0
46
第147回 雲勉 Amazon CloudWatchをウォッチ!
iret
0
58
第146回 雲勉 BLEAを眺めてCDKの書き方について学ぶ
iret
1
70
Other Decks in Technology
See All in Technology
テストアーキテクチャ設計で実現する高品質で高スピードな開発の実践 / Test Architecture Design in Practice
ropqa
3
710
10分で紹介するAmazon Bedrock利用時のセキュリティ対策 / 10-minutes introduction to security measures when using Amazon Bedrock
hideakiaoyagi
0
170
急成長する企業で作った、エンジニアが輝ける制度/ 20250214 Rinto Ikenoue
shift_evolve
2
880
[2025-02-07]生成AIで変える問い合わせの未来 〜チームグローバル化の香りを添えて〜
tosite
1
290
関東Kaggler会LT: 人狼コンペとLLM量子化について
nejumi
3
460
The 5 Obstacles to High-Performing Teams
mdalmijn
0
270
エンジニアの育成を支える爆速フィードバック文化
sansantech
PRO
3
670
地方拠点で エンジニアリングマネージャーってできるの? 〜地方という制約を楽しむオーナーシップとコミュニティ作り〜
1coin
1
130
転生CISOサバイバル・ガイド / CISO Career Transition Survival Guide
kanny
3
410
MC906491 を見据えた Microsoft Entra Connect アップグレード対応
tamaiyutaro
1
480
目の前の仕事と向き合うことで成長できる - 仕事とスキルを広げる / Every little bit counts
soudai
22
5.8k
技術的負債解消の取り組みと専門チームのお話 #技術的負債_Findy
bengo4com
1
1.2k
Featured
See All Featured
Designing for Performance
lara
604
68k
Sharpening the Axe: The Primacy of Toolmaking
bcantrill
40
2k
The Power of CSS Pseudo Elements
geoffreycrofte
75
5.5k
Done Done
chrislema
182
16k
A designer walks into a library…
pauljervisheath
205
24k
Practical Tips for Bootstrapping Information Extraction Pipelines
honnibal
PRO
12
950
What’s in a name? Adding method to the madness
productmarketing
PRO
22
3.3k
Documentation Writing (for coders)
carmenintech
67
4.6k
Product Roadmaps are Hard
iamctodd
PRO
50
11k
Refactoring Trust on Your Teams (GOTO; Chicago 2020)
rmw
33
2.8k
Bootstrapping a Software Product
garrettdimon
PRO
305
110k
Fantastic passwords and where to find them - at NoRuKo
philnash
51
3k
Transcript
第1回 雲勉LT⼤会 Amazon SageMaker Canvas で学ぶ機械学習モデルの構築
⾃⼰紹介 2 前野 佑宜(まえの ゆうき) • 第四開発事業部 第三開発セクション第三開発Eグループ所属 • 23新卒でアイレット⼊社→今年の4⽉で⼊社1年
• ⼤学時代は経済学部で、全くの未経験からIT業界に⾶び込んだ • 現在は、主にバックエンド開発に従事 初めてのLTで⾄らない点もありますが 温かい⽬で⾒守って頂けますと幸いです︕
アジェンダ 3 テーマ紹介 「SageMaker Canvasで学ぶ機械学習モデルの構築」 AI Package Tracker hands-on labでの
ハンズオンラボ まとめ
本⽇のゴール 4 極⼒難しい⾔葉は使わないように、 分かりやすい⾔葉でお伝えします︕ AWSの「機械学習」サービスの 学習の障壁を下げること 私⾃⾝もまだまだ機械学習初学者なので、 初⼼者⽬線で感じたこともお伝えできればと思います︕
1. テーマ紹介 5
1.テーマ紹介 6 Amazon SageMaker とは︖ ・機械学習モデルを構築、トレーニング、デプロイできるサービス Amazon SageMaker Canvas とは︖
・ノーコードで機械学習モデルをデプロイできるSageMakerの⼀機能 ・↑機械学習=「難易度が⾼くとっつきにくい」という ⼀般的なイメージを払拭
1.テーマ紹介 7 BedrockとSageMaker、何が違うの︖ ・どちらも基盤モデルを⼿軽に使うことのできるサービス ・違いを下記の表にまとめてみました Amazon SageMaker (正確にはSageMaker JumpStartという機能) Amazon
Bedrock 利⽤⽅法 推論エンドポイント経由 (ユーザー⾃⾝でエンドポイントを⽴てる) Bedrock API経由 (Bedrockのサービス側に 基盤モデルがホストされている) お⼿軽さ ◦ (⾃⾝でインスタンスタイプの 設定はする必要がある) ◎ カスタマイズ性 ◎ ◦
2. AI Package Tracker hands-on labでの ハンズオン 8
2.AI Package Tracker hands-on labでのハンズオン 9 AI Package Tracker hands-on
lab を使⽤しました • AWSアカウント不要で試すことのできるハンズオンラボ (https://ai.awsplayer.com/labs/amazonsagemakercanvas) • AWS Builder ID(無料) を別途作成する必要はある 初期画⾯はこんな感じ ★事前準備不要 →データはすでに準備されている
2.AI Package Tracker hands-on labでのハンズオン 10 注意点 • 時間の都合上、要点をかいつまんでお伝えすることになります🙇 •
詳細はiret.mediaにも(https://iret.media/94166)公開しておりますのでご覧くださ い︕ • ハンズオンについては確か制限時間(8h?)があった気がするのでご注意を︕
2.AI Package Tracker hands-on labでのハンズオン 11 AI Packager Tracker hands-onの内容をざっくり要約
• 荷物の配送状況がOntime(時間通り)なのかDelayed(遅れている)なのかの要因を、 モデルを⽤いて推測 On time Delayed
2.AI Package Tracker hands-on labでのハンズオン 12 全体像
2.AI Package Tracker hands-on labでのハンズオン 13 ①データのインポート+データセットの作成
2.AI Package Tracker hands-on labでのハンズオン 14 ①データのインポート+データセットの作成 今回は、事前に準備されているcsvデータを使⽤します
2.AI Package Tracker hands-on labでのハンズオン 15 CSVファイルの中⾝を詳しくみる →2018年冬の3ヶ⽉間にアメリカで取られた45000件のデータ 郵便番号・配送量・その時の気象データ・配送遅延の状況が ⼊っている
2.AI Package Tracker hands-on labでのハンズオン 16 ①データセット作成後、Preview Modelで分析の正確さが確認できる
2.AI Package Tracker hands-on labでのハンズオン 17 ②ビルド(Build)
2.AI Package Tracker hands-on labでのハンズオン 18 モデルの正確性 遅延の要因 ③分析(Analyze)
2.AI Package Tracker hands-on labでのハンズオン 19 パラメータ 予測結果 寄与度 ④予測(Predict)
2.AI Package Tracker hands-on labでのハンズオン 20 ④予測(Predict) ⾚:変更箇所 緑:寄与度が⾼いカラム 試しにパラメータを変えてみるとどうなるか︖︖
3. まとめ 21
3.まとめ 22 SageMaker Canvasを使ってみての感想や気づき 機械学習の深い知識がなくても 簡単にGUI上でモデルを作成し、分析ができるのは便利 とはいえ、多少は統計の基礎の部分の知識の理解は必要な気がした ハンズオンラボ→「とりあえず軽く触ってみたい」⼈にはお勧めです︕ 機械学習はあくまでも課題解決の⼿段にすぎない →「機械学習を使って何がしたいのか」を明確にするのかが⼤事︕
参考⽂献 23 ⼤規模⾔語モデル (LLM) ⼊⾨ | AWS AI Week for
Developers https://www.youtube.com/watch?v=jnmxMUqdV_0&list=PLzWGOASvSx6GpTyGBB6rLapnY9N_xrBKW&index=4 AWS Builders Online Series ノーコードではじめる 機械学習 Amazon SageMaker Canvas の 使いどころ https://pages.awscloud.com/rs/112-TZM-766/images/BOS18_T2-1_AWS-Builders-Online-Series_2023-Q1_Presentation- Deck.pdf
動画URL 24 n 動画タイトル 第1回 雲勉LT⼤会 AWSをテーマに社内でLT⼤会をやってみた n 動画URL https://youtu.be/EVdUQx4jCkE
ご清聴ありがとうございました︕ 25