Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
Amazon SageMaker Canvasで学ぶ機械学習モデルの構築
Search
iret.kumoben
March 19, 2024
Technology
0
1.1k
Amazon SageMaker Canvasで学ぶ機械学習モデルの構築
下記、勉強会での資料です。
https://youtu.be/EVdUQx4jCkE
iret.kumoben
March 19, 2024
Tweet
Share
More Decks by iret.kumoben
See All by iret.kumoben
第146回 雲勉 BLEAを眺めてCDKの書き方について学ぶ
iret
1
45
第145回 雲勉 Amazon ECSでサービス間通信する方法を調べてみよう
iret
0
39
第144回 雲勉 Amazon Aurora Serverless v2の基礎とアーキの裏側を覗いてみる
iret
0
84
第143回 雲勉 [New Relic]インフラストラクチャ監視と気をつけたいポイント
iret
0
39
第142回 雲勉 AWS Backupの復元テストで自動化できること・できないこと
iret
0
84
第141回 雲勉 Amazon Inspectorによる脆弱性管理~ECR コンテナイメージ編~
iret
0
200
第2回 雲勉LT大会 パブリッククラウドのサーバレスサービスの違いを調べてみた
iret
0
24
第2回 雲勉LT大会 AWS Control Tower の「コントロール」って何? という謎から AWS Control Tower を知る
iret
0
23
第2回 雲勉LT大会 AWS/Google Cloud/Wasabi ストレージサービスを比較したい
iret
0
43
Other Decks in Technology
See All in Technology
BLADE: An Attempt to Automate Penetration Testing Using Autonomous AI Agents
bbrbbq
0
290
Lexical Analysis
shigashiyama
1
150
Lambdaと地方とコミュニティ
miu_crescent
2
370
安心してください、日本語使えますよ―Ubuntu日本語Remix提供休止に寄せて― 2024-11-17
nobutomurata
1
990
Python(PYNQ)がテーマのAMD主催のFPGAコンテストに参加してきた
iotengineer22
0
470
VideoMamba: State Space Model for Efficient Video Understanding
chou500
0
190
New Relicを活用したSREの最初のステップ / NRUG OKINAWA VOL.3
isaoshimizu
2
580
TypeScriptの次なる大進化なるか!? 条件型を返り値とする関数の型推論
uhyo
2
1.6k
初心者向けAWS Securityの勉強会mini Security-JAWSを9ヶ月ぐらい実施してきての近況
cmusudakeisuke
0
120
OCI Network Firewall 概要
oracle4engineer
PRO
0
4.1k
隣接領域をBeyondするFinatextのエンジニア組織設計 / beyond-engineering-areas
stajima
1
270
ハイパーパラメータチューニングって何をしているの
toridori_dev
0
140
Featured
See All Featured
Scaling GitHub
holman
458
140k
The World Runs on Bad Software
bkeepers
PRO
65
11k
YesSQL, Process and Tooling at Scale
rocio
169
14k
Documentation Writing (for coders)
carmenintech
65
4.4k
Making the Leap to Tech Lead
cromwellryan
133
8.9k
How to Think Like a Performance Engineer
csswizardry
20
1.1k
Unsuck your backbone
ammeep
668
57k
It's Worth the Effort
3n
183
27k
Build your cross-platform service in a week with App Engine
jlugia
229
18k
The Straight Up "How To Draw Better" Workshop
denniskardys
232
140k
Designing for Performance
lara
604
68k
実際に使うSQLの書き方 徹底解説 / pgcon21j-tutorial
soudai
169
50k
Transcript
第1回 雲勉LT⼤会 Amazon SageMaker Canvas で学ぶ機械学習モデルの構築
⾃⼰紹介 2 前野 佑宜(まえの ゆうき) • 第四開発事業部 第三開発セクション第三開発Eグループ所属 • 23新卒でアイレット⼊社→今年の4⽉で⼊社1年
• ⼤学時代は経済学部で、全くの未経験からIT業界に⾶び込んだ • 現在は、主にバックエンド開発に従事 初めてのLTで⾄らない点もありますが 温かい⽬で⾒守って頂けますと幸いです︕
アジェンダ 3 テーマ紹介 「SageMaker Canvasで学ぶ機械学習モデルの構築」 AI Package Tracker hands-on labでの
ハンズオンラボ まとめ
本⽇のゴール 4 極⼒難しい⾔葉は使わないように、 分かりやすい⾔葉でお伝えします︕ AWSの「機械学習」サービスの 学習の障壁を下げること 私⾃⾝もまだまだ機械学習初学者なので、 初⼼者⽬線で感じたこともお伝えできればと思います︕
1. テーマ紹介 5
1.テーマ紹介 6 Amazon SageMaker とは︖ ・機械学習モデルを構築、トレーニング、デプロイできるサービス Amazon SageMaker Canvas とは︖
・ノーコードで機械学習モデルをデプロイできるSageMakerの⼀機能 ・↑機械学習=「難易度が⾼くとっつきにくい」という ⼀般的なイメージを払拭
1.テーマ紹介 7 BedrockとSageMaker、何が違うの︖ ・どちらも基盤モデルを⼿軽に使うことのできるサービス ・違いを下記の表にまとめてみました Amazon SageMaker (正確にはSageMaker JumpStartという機能) Amazon
Bedrock 利⽤⽅法 推論エンドポイント経由 (ユーザー⾃⾝でエンドポイントを⽴てる) Bedrock API経由 (Bedrockのサービス側に 基盤モデルがホストされている) お⼿軽さ ◦ (⾃⾝でインスタンスタイプの 設定はする必要がある) ◎ カスタマイズ性 ◎ ◦
2. AI Package Tracker hands-on labでの ハンズオン 8
2.AI Package Tracker hands-on labでのハンズオン 9 AI Package Tracker hands-on
lab を使⽤しました • AWSアカウント不要で試すことのできるハンズオンラボ (https://ai.awsplayer.com/labs/amazonsagemakercanvas) • AWS Builder ID(無料) を別途作成する必要はある 初期画⾯はこんな感じ ★事前準備不要 →データはすでに準備されている
2.AI Package Tracker hands-on labでのハンズオン 10 注意点 • 時間の都合上、要点をかいつまんでお伝えすることになります🙇 •
詳細はiret.mediaにも(https://iret.media/94166)公開しておりますのでご覧くださ い︕ • ハンズオンについては確か制限時間(8h?)があった気がするのでご注意を︕
2.AI Package Tracker hands-on labでのハンズオン 11 AI Packager Tracker hands-onの内容をざっくり要約
• 荷物の配送状況がOntime(時間通り)なのかDelayed(遅れている)なのかの要因を、 モデルを⽤いて推測 On time Delayed
2.AI Package Tracker hands-on labでのハンズオン 12 全体像
2.AI Package Tracker hands-on labでのハンズオン 13 ①データのインポート+データセットの作成
2.AI Package Tracker hands-on labでのハンズオン 14 ①データのインポート+データセットの作成 今回は、事前に準備されているcsvデータを使⽤します
2.AI Package Tracker hands-on labでのハンズオン 15 CSVファイルの中⾝を詳しくみる →2018年冬の3ヶ⽉間にアメリカで取られた45000件のデータ 郵便番号・配送量・その時の気象データ・配送遅延の状況が ⼊っている
2.AI Package Tracker hands-on labでのハンズオン 16 ①データセット作成後、Preview Modelで分析の正確さが確認できる
2.AI Package Tracker hands-on labでのハンズオン 17 ②ビルド(Build)
2.AI Package Tracker hands-on labでのハンズオン 18 モデルの正確性 遅延の要因 ③分析(Analyze)
2.AI Package Tracker hands-on labでのハンズオン 19 パラメータ 予測結果 寄与度 ④予測(Predict)
2.AI Package Tracker hands-on labでのハンズオン 20 ④予測(Predict) ⾚:変更箇所 緑:寄与度が⾼いカラム 試しにパラメータを変えてみるとどうなるか︖︖
3. まとめ 21
3.まとめ 22 SageMaker Canvasを使ってみての感想や気づき 機械学習の深い知識がなくても 簡単にGUI上でモデルを作成し、分析ができるのは便利 とはいえ、多少は統計の基礎の部分の知識の理解は必要な気がした ハンズオンラボ→「とりあえず軽く触ってみたい」⼈にはお勧めです︕ 機械学習はあくまでも課題解決の⼿段にすぎない →「機械学習を使って何がしたいのか」を明確にするのかが⼤事︕
参考⽂献 23 ⼤規模⾔語モデル (LLM) ⼊⾨ | AWS AI Week for
Developers https://www.youtube.com/watch?v=jnmxMUqdV_0&list=PLzWGOASvSx6GpTyGBB6rLapnY9N_xrBKW&index=4 AWS Builders Online Series ノーコードではじめる 機械学習 Amazon SageMaker Canvas の 使いどころ https://pages.awscloud.com/rs/112-TZM-766/images/BOS18_T2-1_AWS-Builders-Online-Series_2023-Q1_Presentation- Deck.pdf
動画URL 24 n 動画タイトル 第1回 雲勉LT⼤会 AWSをテーマに社内でLT⼤会をやってみた n 動画URL https://youtu.be/EVdUQx4jCkE
ご清聴ありがとうございました︕ 25