$30 off During Our Annual Pro Sale. View Details »

Machine Learning for Molecules: Lessons and Challenges of Data-Centric Chemistry

itakigawa
April 18, 2022

Machine Learning for Molecules: Lessons and Challenges of Data-Centric Chemistry

Perspectives on Artificial Intelligence and Machine Learning in Materials Science, FY2021 IMI Joint Usage Research, Kyushu University, Feb 4-6, 2022.

https://joint.imi.kyushu-u.ac.jp/post-2695/

itakigawa

April 18, 2022
Tweet

More Decks by itakigawa

Other Decks in Research

Transcript

  1. Machine Learning for Molecules
    Lessons and Challenges of Data-Centric Chemistry
    Ichigaku Takigawa
    https://itakigawa.github.io/
    3*,&/$FOUFSGPS"EWBODFE*OUFMMJHFODF1SPKFDU "*1

    *OTUJUVUFGPS$IFNJDBM3FBDUJPO%FTJHOBOE%JTDPWFSZ *$3F%%
    )PLLBJEP6OJWFSTJUZ
    Feb 5th, 2022

    View Slide

  2. ୍઒Ұֶ
    TAKIGAWA Ichigaku
    https://itakigawa.github.io
    • 1995-2004 Hokkaido Univ (Grad School. Engineering)
    2004 PhD Computer Science
    • 2005-2011 Kyoto Univ (Inst. Chemical Research)
    Bioinformatics Center, Assist. Prof.
    Grad School Pharmaceutical Sciences, Assit. Prof.
    • 2012-2018 Hokkaido Univ (Grad School. Info Sci & Tech)
    Large-Scale Knowledge Processing Lab, Assoc. Prof.
    2015-2018 JST PRESTO for Materials Informatics
    • 2019- RIKEN Center for AI Project @ ATR Kyoto
    2019- Hokkaido Univ
    (Inst. Chemical Reaction Design & Discovery)
    Hi, I am a machine-learning researcher
    RIKEN AIP Kyoto, Kyoto Univ CiRA, Nikon
    jointly working on stem cell biology.

    View Slide

  3. ୍઒Ұֶ
    TAKIGAWA Ichigaku
    https://itakigawa.github.io
    • 1995-2004 Hokkaido Univ (Grad School. Engineering)
    2004 PhD Computer Science
    • 2005-2011 Kyoto Univ (Inst. Chemical Research)
    Bioinformatics Center, Assist. Prof.
    Grad School Pharmaceutical Sciences, Assit. Prof.
    • 2012-2018 Hokkaido Univ (Grad School. Info Sci & Tech)
    Large-Scale Knowledge Processing Lab, Assoc. Prof.
    2015-2018 JST PRESTO for Materials Informatics
    • 2019- RIKEN Center for AI Project @ ATR Kyoto
    2019- Hokkaido Univ
    (Inst. Chemical Reaction Design & Discovery)
    But also, I am a machine-learning user
    RIKEN AIP Kyoto, Kyoto Univ CiRA, Nikon
    jointly working on stem cell biology.

    View Slide

  4. Inst. Chemical Reaction Design and Discovery
    https://www.icredd.hokudai.ac.jp
    We're working on real-world
    chemistry with great chemists!
    Prof. Ben List got 2021 Nobel Prize in Chemistry

    View Slide

  5. My interest: Machine learning with discrete structures
    Discrete structures, i.e., combinatorial or algebraic structures
    such as sets, groups, permutations, combinations, sequences, trees, and graphs
    Target objects Relations between target objects
    ML models

    View Slide

  6. https://cen.acs.org/physical-chemistry/computational-chemistry/Exploring-chemical-space-AI-take/98/i13
    Molecules clearly have a combinatorial aspect

    View Slide

  7. How can ML leverage these combinatorial nature?
    • A molecule is a set of atoms and bonds
    • A chemical reaction is a recombination pattern of bonds
    Compositionality and hiearchy
    Similar to natural language?
    We combine words to make any
    complicated sentences.
    The underlying rules are (largely)
    governed by many-body
    quantum chemistry of electrons
    Substituents

    View Slide

  8. This talk
    1. What actually ML is?
    2. The dark side: Modern aspects of ML
    3. The light side: Deep learning for molecules
    A quick review on the dark side and light side of ML
    from both viewpoints as an ML algorithm researcher and an ML practitioner/user
    May the ML Force be with you…
    Science is built up of facts, as a house is built of stones;
    but an accumulation of facts is no more a science than
    a heap of stones is a house. Henri Poincaré "Science and hypothesis"
    This slide is available at
    https://itakigawa.github.io/news.html

    View Slide

  9. ML converts data into "prediction"
    get weight, height

    View Slide

  10. ML converts data into "prediction"
    get weight, height
    5 6.25 7.5 8.75 10
    90 112.5 135 157.5 180










    Weight (g)
    Height (cm)
    ӪOrange
    ӪApple

    View Slide

  11. ML converts data into "prediction"
    get weight, height
    5 6.25 7.5 8.75 10
    90 112.5 135 157.5 180























































































    ● ●









    ● ●












    ●●

























    ● ●




















































    ● ●


    ● ●

    Weight (g)
    Height (cm)
    ӪOrange
    ӪApple

    View Slide

  12. ML converts data into "prediction"
    get weight, height
    5 6.25 7.5 8.75 10
    90 112.5 135 157.5 180























































































    ● ●









    ● ●












    ●●

























    ● ●




















































    ● ●


    ● ●















    ● ●















    ● ●













    ● ●

    ●●




























    ● ●















































    ● ●







































    ● ●
















































































    ● ● ●



















































































































































    ● ●




















    ● ●























    ●●
































    ● ●





















































    ● ●


    ● ●











    ● ●






















































    ● ●
















    ● ●


















    ● ●










    ● ●


    ● ●








    ● ●







    ● ●








    ● ●















    ● ●












































    ● ●

    ● ●




















    ● ●

































    ●●





















    ● ●







































    ● ●




    ● ●















    ● ●


























    ● ●



















    ● ●











    ● ●
































    ● ●











    ● ●































































    ● ●
    ● ●




























































    ● ●











































    ● ●









































    ● ●



    ● ●
















































    ● ●
    ● ●









    ● ●






































    ● ●



























    ● ●




















































    ● ●






    ● ● ●














    ● ●

















    ● ●
































    ● ●


    ● ●




















































    ● ●


















    ● ●






    ● ●




















    ● ●





















    ● ●





























    ● ●






    ● ●




























    ● ●















































    ● ●



































    ●●








    ● ●










    ● ●
















    ● ●





















    ●●











    ● ●














































    ● ●













































































    ● ●









































    ● ●































    ● ●




















    ● ●






















    ● ●






    ● ●
















    ● ●





    ● ●










    ● ●








    ● ●









    ● ●









    ●●









    ● ●


    ● ●











    ● ●

























































































    ● ●

























    ● ●

    ● ●






















    ● ●


























































    ● ●















    ● ●







    ● ●









    ● ●






















































    ● ●















    ● ●























    ● ●








    ● ●





    ● ●












    ● ●













    ● ●

    ● ●



















    ● ●





































    ● ●





























































































    ● ●

































































    ● ●

    ● ●


















    ● ●









    ● ●


    ● ●



































































































    ● ●














    ● ●
    ● ●
    ● ●

































    ● ●


















































    ●●



















































































    ● ●
























    ● ●






































































































































    ● ●























    ● ●

    ● ●














    ● ●


































    ● ●




























    ● ●












    ● ●












    ● ●



    ● ●























































    ● ●











    ● ●











    ●●



    ● ●











































    ● ●





































































    ● ●





































    ● ● ●
















    ● ●
    ● ●
























    ● ●

















    ● ●










































































































































































    ● ●
















































    ● ●






































    ● ●




























    ● ●













































    ● ●
















    ● ●




























































    ● ●


    ● ●






    ● ●





















    ● ●








































    ● ●




























    ● ●














    ● ●




    ● ●











    ● ●


    ● ●







    ● ●













    ● ●









    ● ●






















































































    ● ●










































    ● ●

















































































    ● ●




    ● ●





























    ● ●
    ● ●


















    ● ●


































    ● ●

















































































    ● ●

    ● ●































    ● ●













    ● ●




























    ● ●




















































    ● ●








    ● ●






























































































    ● ●























































    ● ●



    ● ●












































































































    ● ●













    ● ●




































    ● ●























































    ● ●















    ● ●























    ● ●








    ● ●










































    ● ●

























































    ● ●

    ● ●





































































    ● ●




    ● ●






































































    ● ●














    ● ●
























































    ● ●
    ● ●








    ● ●

















    ● ●
    ● ●















    ● ●












    ● ●










    ● ●






















    ● ●
































    ● ●



    ● ●


























    ● ●



















































































    ● ●

    ● ●








































    ● ●












    ● ●





























    ● ●








    ● ●













    ● ●

    ● ●


    ● ●
    ● ●
    ● ●











    ● ●















































    ● ●






































    ● ●









    ● ●










    ● ●

































































































    ● ●
















    ● ●





























    ●●
    ● ●

























    ● ●




    ●● ●












    ● ●






























    ● ●





















    ● ●







    ● ●









    ● ●





































    ● ●






    ● ●




    ● ●



























    ● ●





























    ● ●




















































































    ● ●

























    ● ●









































    ● ●



























    ● ●
    ● ●






















































    ● ●










    ● ●














































































    ● ●












































    ● ●





    ● ●
















    ● ●





    ● ●

    ● ●




































































    ● ●

    ● ●








    ● ●



    ● ●







    ● ●








    ● ●




















    ● ●




    ● ●






































    ●●


    ● ●




    ● ●


















    ● ●



    ● ●

    ● ●






























    ● ●


    ● ●

















    ● ●
















    ● ●






    ● ●






    ● ●
































    ● ●
























    ● ●
































    ● ●
















    ● ● ●





    ● ●














    ● ●






































    ● ●




















    ● ●




    ● ●



























































    ● ●


    ● ●















































    ● ●






    ● ●











































    ● ●





















    ● ●





















    ● ●















    ● ●




































    ● ●

    ● ●















    ● ●


    ● ●













    ● ●



















































    ● ●







































    ● ●























    ●●








    ● ●



































































    ●●
















    ● ●











    ● ●


    ● ●













    ● ●






































































    ● ●
























    ● ●



















    ● ●


    ● ●





















































    ● ●























    ●●




    ● ●



































    ● ●



















    ● ●








    ● ●























    ● ●





    ● ●
























    ● ●

























    ● ●






















    ● ●




















    ● ●


















































    ● ●




































    ● ●



































    ● ●












    ● ●



























    ● ●









































































    ● ●













































    ● ●

















    ● ●







    ● ●



    ● ●



    ● ●



    ● ●




    ● ●




    ● ●


























    ● ●






















    ● ●




    ● ●


















































    ● ●






    ● ●



    ● ●


    ● ●





    ● ●







    ● ●





























    ● ●




































    ● ●












    ● ●













    ● ●





    ● ●






















    ● ●


































    ●●
    ● ●
























































































































    ● ●










    ● ●

























    ● ●




    ● ●










    ● ●



















































































    ● ●











    ● ●


































    ● ●













    ● ●


    ● ●




























    ● ●












    ● ●








    ● ●












































    ● ●
























    ● ●





    ● ●



















































































    ● ●




    ● ●






































    ● ●


    ● ●
































    ● ●

























    ● ●






    ● ●
















    ● ●













    Weight (g)
    Height (cm)
    ӪOrange
    ӪApple
    Height (cm)
    Weight (g)
    ӪApple
    ӪOrange
    A program for "prediction"

    View Slide

  13. ML converts data into "prediction"
    A program for "prediction"
    ӪApple
    ӪOrange
    5 6.25 7.5 8.75 10
    90 112.5 135 157.5 180










    Weight (g)
    Height (cm)
    ӪApple
    ӪOrange
    Height (cm)
    Weight (g)

    View Slide

  14. ML converts data into "prediction"
    A program for "prediction"
    ӪApple
    ӪOrange
    5 6.25 7.5 8.75 10
    90 112.5 135 157.5 180










    Weight (g)
    Height (cm)
    ӪApple
    ӪOrange
    Height (cm)
    Weight (g)

    View Slide

  15. ML converts data into "prediction"
    A program for "prediction"
    ӪApple
    ӪOrange
    5 6.25 7.5 8.75 10
    90 112.5 135 157.5 180










    Weight (g)
    Height (cm)
    ӪApple
    ӪOrange
    Height (cm)
    Weight (g)

    View Slide

  16. ML converts data into "prediction"
    A program for "prediction"
    ӪApple
    ӪOrange
    5 6.25 7.5 8.75 10
    90 112.5 135 157.5 180










    Weight (g)
    Height (cm)
    ӪApple
    ӪOrange
    Height (cm)
    Weight (g)

    View Slide

  17. ML converts data into "prediction"
    A program for "prediction"
    ӪApple
    ӪOrange
    5 6.25 7.5 8.75 10
    90 112.5 135 157.5 180










    Weight (g)
    Height (cm)
    ӪApple
    ӪOrange
    Height (cm)
    Weight (g)

    View Slide

  18. ML converts data into "prediction"
    A program for "prediction"
    ӪApple
    ӪOrange
    5 6.25 7.5 8.75 10
    90 112.5 135 157.5 180










    Weight (g)
    Height (cm)
    ӪApple
    ӪOrange
    Height (cm)
    Weight (g)

    View Slide

  19. ML converts data into "prediction"
    A program for "prediction"
    ӪApple
    ӪOrange
    5 6.25 7.5 8.75 10
    90 112.5 135 157.5 180










    Weight (g)
    Height (cm)
    ӪApple
    ӪOrange
    Height (cm)
    Weight (g)

    View Slide

  20. ML converts data into "prediction"
    A program for "prediction"
    ӪApple
    ӪOrange
    5 6.25 7.5 8.75 10
    90 112.5 135 157.5 180










    Weight (g)
    Height (cm)
    ӪApple
    ӪOrange
    Height (cm)
    Weight (g)

    View Slide

  21. ML converts data into "prediction"
    A program for "prediction"
    ӪApple
    ӪOrange
    5 6.25 7.5 8.75 10
    90 112.5 135 157.5 180










    Weight (g)
    Height (cm)
    ӪApple
    ӪOrange
    Height (cm)
    Weight (g)
    Now we got a computer program to predict "orange or apple"
    for any unseen ones directly from collected data

    View Slide

  22. ML is a new (lazy) way of programming
    Object recognition
    Game play
    ˑ֮׶ָהֲ˒
    J’aime la
    musique I love music
    Speech recognition
    Machine translation
    Super resolution
    ML generates a computer program just by giving many input-output examples
    even when we don't know the underlying mechanism between inputs and outputs.

    View Slide

  23. This simple idea is more powerful than you may think
    Remarkably powerful when we have relevant input-output examples (it's useless if we don't)

    View Slide

  24. Many ways to mathematically represent the boundary
    ر٦ة Decision
    Tree
    Random
    Forest GBDT
    Nearest
    Neighbor
    Logistic
    Regression
    SVM
    Gaussian
    Process
    Neural
    Network
    This is why you see too many algorithms when you start to learn ML…

    View Slide

  25. But anyway, we're just tweaking parameters for a good fit
    p1 p2 p3 p4

    Surface model
    Internally, we're just fitting a surface to given points by adjusting its parameter values.
    Random Forest
    Gaussian Process
    Logistic Regression

    View Slide

  26. Deep Learning (Representation Learning)
    q1 q2 q3 q4

    Surface model
    Input variables
    Standard ML
    Random
    Forest
    GBDT
    Nearest
    Neighbor
    SVM
    Gaussian
    Process
    Neural
    Network

    View Slide

  27. Deep Learning (Representation Learning)
    q1 q2 q3 q4

    p1 p2 p3 p4

    Variable transformation
    AAAChnichVHLTsJAFD3UF+ID1I2JGyLBuCJTg2JcEd245CGPBAlp64gNpW3aQgLEHzBxKwtXmrgwfoAf4MYfcMEnGJeYuHHhpTQxSsTbTOfMmXvunJkrm5pqO4z1fMLE5NT0jH82MDe/sBgMLS3nbaNhKTynGJphFWXJ5pqq85yjOhovmhaX6rLGC3LtYLBfaHLLVg39yGmZvFyXqrp6qiqSQ1S2XREroQiLMTfCo0D0QARepIzQI45xAgMKGqiDQ4dDWIMEm74SRDCYxJXRIc4ipLr7HOcIkLZBWZwyJGJr9K/SquSxOq0HNW1XrdApGg2LlGFE2Qu7Z332zB7YK/v8s1bHrTHw0qJZHmq5WQlerGY//lXVaXZw9q0a69nBKXZdryp5N11mcAtlqG+2u/3sXiba2WC37I3837Aee6Ib6M135S7NM9dj/MjkhV6MGiT+bscoyG/FxJ1YPB2PJPe9VvmxhnVsUj8SSOIQKeSofhWXuEJX8AsxYVtIDFMFn6dZwY8Qkl9Y9pCe
    z1
    AAAChnichVHLTsJAFD3UF+ID1I2JGyLBuCIDQTGuiG5c8pBHgoS0dcCG0jZtIQHiD5i4lYUrTVwYP8APcOMPuOATjEtM3LjwUpoYJeJtpnPmzD13zsyVDFWxbMb6HmFqemZ2zjvvW1hcWvYHVlbzlt40ZZ6TdVU3i5JocVXReM5WbJUXDZOLDUnlBal+ONwvtLhpKbp2bLcNXm6INU2pKrJoE5XtVGKVQIhFmBPBcRB1QQhupPTAI05wCh0ymmiAQ4NNWIUIi74SomAwiCujS5xJSHH2Oc7hI22TsjhliMTW6V+jVcllNVoPa1qOWqZTVBomKYMIsxd2zwbsmT2wV/b5Z62uU2PopU2zNNJyo+K/WM9+/Ktq0Gzj7Fs10bONKvYcrwp5NxxmeAt5pG91eoPsfibc3WK37I3837A+e6IbaK13+S7NM9cT/EjkhV6MGhT93Y5xkI9ForuReDoeSh64rfJiA5vYpn4kkMQRUshR/RoucYWe4BUiwo6QGKUKHlezhh8hJL8AWxaQnw==
    z2
    AAAChnichVHLTsJAFD3UF+ID1I2JGyLBuCJTg2JcEd245CGPBAlp64gNpW3aQgLEHzBxKwtXmrgwfoAf4MYfcMEnGJeYuHHhpTQxSsTbTOfMmXvunJkrm5pqO4z1fMLE5NT0jH82MDe/sBgMLS3nbaNhKTynGJphFWXJ5pqq85yjOhovmhaX6rLGC3LtYLBfaHLLVg39yGmZvFyXqrp6qiqSQ1S2XREroQiLMTfCo0D0QARepIzQI45xAgMKGqiDQ4dDWIMEm74SRDCYxJXRIc4ipLr7HOcIkLZBWZwyJGJr9K/SquSxOq0HNW1XrdApGg2LlGFE2Qu7Z332zB7YK/v8s1bHrTHw0qJZHmq5WQlerGY//lXVaXZw9q0a69nBKXZdryp5N11mcAtlqG+2u/3sXiba2WC37I3837Aee6Ib6M135S7NM9dj/MjkhV6MGiT+bscoyG/FxJ1YPB2PJPe9VvmxhnVsUj8SSOIQKeSofhWXuEJX8AsxYVtIDFMFn6dZwY8Qkl9Y9pCe
    z1
    AAAChnichVHLTsJAFD3UF+ID1I2JGyLBuCIDQTGuiG5c8pBHgoS0dcCG0jZtIQHiD5i4lYUrTVwYP8APcOMPuOATjEtM3LjwUpoYJeJtpnPmzD13zsyVDFWxbMb6HmFqemZ2zjvvW1hcWvYHVlbzlt40ZZ6TdVU3i5JocVXReM5WbJUXDZOLDUnlBal+ONwvtLhpKbp2bLcNXm6INU2pKrJoE5XtVGKVQIhFmBPBcRB1QQhupPTAI05wCh0ymmiAQ4NNWIUIi74SomAwiCujS5xJSHH2Oc7hI22TsjhliMTW6V+jVcllNVoPa1qOWqZTVBomKYMIsxd2zwbsmT2wV/b5Z62uU2PopU2zNNJyo+K/WM9+/Ktq0Gzj7Fs10bONKvYcrwp5NxxmeAt5pG91eoPsfibc3WK37I3837A+e6IbaK13+S7NM9cT/EjkhV6MGhT93Y5xkI9ForuReDoeSh64rfJiA5vYpn4kkMQRUshR/RoucYWe4BUiwo6QGKUKHlezhh8hJL8AWxaQnw==
    z2
    -BUFOUWBSJBCMFT
    Deep Learning
    5IJTQBSUDBOCFTJNQMF
    JGXFDBOOEBOEMFBSO
    BHPPESFQSFTFOUBUJPO
    PGUIFJOQVU
    Standard ML
    Input variables
    Surface model

    View Slide

  28. Pitfall: The lure of wishful wordings
    The current ML is stunningly powerful but it's very different from our sci-fi image of "AI".
    Be careful about these "wishful" wordings that needlessly distract and mislead us!
    Why Is AI So Dumb?
    A SPECIAL REPORT
    "Artificial intelligence" doesn't mean that we have something artificial also intelligent like us.
    "Machine learning" doesn't mean that machines actually learn things like us.

    View Slide

  29. This talk
    1. What actually ML is?
    2. The dark side: Modern aspects of ML
    3. The light side: Deep learning for molecules
    A quick review on the dark side and light side of ML
    from both viewpoints as an ML algorithm researcher and an ML practitioner/user
    May the ML Force be with you…
    Science is built up of facts, as a house is built of stones;
    but an accumulation of facts is no more a science than
    a heap of stones is a house. Henri Poincaré "Science and hypothesis"
    This slide is available at
    https://itakigawa.github.io/news.html

    View Slide

  30. The dark side: Modern aspect of ML
    • High dimensionality: Too many input variables
    We tend to use many input variables because ML is completely unaware of any information
    not in the input variables. Missing relevant factors results in spurious correlation.
    100 x 100 RGB image = 30 thousand variables
    e.g.)
    1000 x 1000 RGB image = 3 million variables

    View Slide

  31. The dark side: Modern aspect of ML
    • Overrepresentation: Too many parameters
    ResNet50: 26 million params
    ResNet101: 45 million params
    EfficientNet-B7: 66 million params
    VGG19: 144 million params
    12-layer, 12-heads BERT: 110 million params
    24-layer, 16-heads BERT: 336 million params
    GPT-2 XL: 1558 million params
    GPT-3: 175 billion params
    e.g.)
    Remember that we're fitting a surface with hundreds million parameters in a several million
    dimensional space!
    • High dimensionality: Too many input variables
    We tend to use many input variables because ML is completely unaware of any information
    not in the input variables. Missing relevant factors results in spurious correlation.
    100 x 100 RGB image = 30 thousand variables
    e.g.)
    1000 x 1000 RGB image = 3 million variables

    View Slide

  32. The dark side: Modern aspect of ML
    • Data hungriness: Big data is big for human, but can be too small for ML models…
    As a result, it requires huge good data to make current ML models work.

    View Slide

  33. The dark side: Modern aspect of ML
    • Data hungriness: Big data is big for human, but can be too small for ML models…
    As a result, it requires huge good data to make current ML models work.
    Think twice about how complex the input-output relationship you are trying to find by ML is.
    How many samples will be statistically sufficient to estimate 2-variable functions like these?
    What if you're fitting a 100-variable function, or 10-thousand-variable function?

    View Slide

  34. The curse of dimensionality
    Bronstein MM, Bruna J, Cohen T, Veličković P.
    Geometric Deep Learning: Grids, Groups, Graphs, Geodesics, and Gauges.
    arXiv [cs.LG]. 2021. http://arxiv.org/abs/2104.13478
    A classic result in function approximation: If we must approximate a function of d variables and
    we know only that it is Lipschitz, say, then we need order (1/ε)d observations on a grid in order
    to obtain an approximation scheme with uniform approximation error ε.
    for all
    AAAConichVG7SgNBFD1Z3/EVtRFECEbFKkwkqKQK2ohVHkaFJIbddRKX7IvdSUCDlZ0/YGGlYCF2WvgBNv6ART5BLBVsLLzZLAQN6l1m58yZe+6cmavYuuYKxpoBqae3r39gcCg4PDI6Nh6amNxxrZqj8pxq6Zazp8gu1zWT54QmdL5nO1w2FJ3vKtWN1v5unTuuZpnb4sjmRUOumFpZU2VBVCk0W04UDFkcKkojc7J/EC4IK9whSqEIizIvwt0g5oMI/EhZoQcUcAALKmowwGFCENYhw6UvjxgYbOKKaBDnENK8fY4TBElboyxOGTKxVfpXaJX3WZPWrZqup1bpFJ2GQ8owFtgzu2Fv7Indshf2+Wuthlej5eWIZqWt5XZp/Gw6+/GvyqBZ4LCj+tOzQBlrnleNvNse07qF2tbXj8/fsonMQmORXbFX8n/JmuyRbmDW39XrNM9c/OFHIS/0YtSg2M92dIOd5WhsJRpPxyPJdb9Vg5jBHJaoH6tIYhMp5Kj+KW5wh3tpXtqS0lK2nSoFfM0UvoVU+AKNf5vS
    f : Rd ! R
    AAACmnichVHLLgRBFD3T3u9BJBIWExOPhUxqRBCrCRtiM8a8EsOkuxUq+pXumgk68wN+wMKKxAIf4ANs/ICFTxBLEhsLd3o6EQS3U12nTt1z61RdzTGEJxl7jChNzS2tbe0dnV3dPb190f6BvGdXXJ3ndNuw3aKmetwQFs9JIQ1edFyumprBC9rBcn2/UOWuJ2wrK48cvmWqe5bYFboqiSpHhw6nDydjJWHFSqYq9zXNz9S2d8rROEuwIGI/QTIEcYSRtqO3KGEHNnRUYILDgiRsQIVH3yaSYHCI24JPnEtIBPscNXSStkJZnDJUYg/ov0erzZC1aF2v6QVqnU4xaLikjGGcPbAr9sLu2Q17Yu+/1vKDGnUvRzRrDS13yn0nwxtv/6pMmiX2P1V/epbYxULgVZB3J2Dqt9Ab+urx6cvGYmbcn2AX7Jn8n7NHdkc3sKqv+uU6z5z94UcjL/Ri1KDk93b8BPmZRHIuMbs+G08tha1qxwjGMEX9mEcKK0gjR/V9nOMaN8qosqSsKmuNVCUSagbxJZTsB6MZmAU=
    x, x0 2 Rd
    -Lipschitz
    AAACqHichVFNLwNRFD0d39/FRmIz0fhM2ryKIFYNGwuL+qgSFZkZr0y8zoyZ16a0fgB/wMKKxEIsLLG28Qcs/ASxJLGxcDudRBDcybx73nn33Dlvru4I05OMPYaUmtq6+obGpuaW1rb2jnBn17Jn512Dpwxb2O6KrnlcmBZPSVMKvuK4XMvpgqf1nZnKebrAXc+0rSW55/D1nLZlmVnT0CRRG+FIOTtUHI7SMjhcVjOC73pCs6Q6p2bKajFaHKRMVSzG/FB/gngAIggiaYevkcEmbBjIIwcOC5KwgAaPnjXEweAQt44ScS4h0z/nOEAzafNUxalCI3aH1i3arQWsRftKT89XG/QVQa9LShX97IFdsBd2zy7ZE3v/tVfJ71HxskdZr2q5s9Fx1LP49q8qR1li+1P1p2eJLCZ9ryZ5d3ymcgujqi/sH78sTi30lwbYGXsm/6fskd3RDazCq3E+zxdO/vCjkxf6YzSg+Pdx/ATLo7H4eGxsfiySmA5G1Yhe9GGI5jGBBGaRRIr6H+IKN7hVRpSkklZWq6VKKNB040so+gci3ZxP
    |f(x) f(x0)| 6 Lkx x0k
    AAAChHichVG7SgNBFD1ZNcZ31EawCQbFQsJE4wMLCdpYWJjERCGK7K6TOLjZXXYngRj8AW0VCysFC/ED/AAbf8AinyCWEWwsvNksiAb1LrNz5sw9d87M1WxDuJKxekDp6OwKdod6evv6BwaHwsMjOdcqOzrP6pZhOTua6nJDmDwrhTT4ju1wtaQZfFs7Wmvub1e44wrL3JJVm++V1KIpCkJXJVGpjf1wlMWYF5F2EPdBFH5sWuEH7OIAFnSUUQKHCUnYgAqXvjziYLCJ20ONOIeQ8PY5TtBL2jJlccpQiT2if5FWeZ81ad2s6XpqnU4xaDikjGCSPbM71mBP7J69sI9fa9W8Gk0vVZq1lpbb+0OnY5n3f1UlmiUOv1R/epYoYMnzKsi77THNW+gtfeX4spFZTk/WptgNeyX/16zOHukGZuVNv03x9NUffjTyQi9GDYr/bEc7yM3G4guxRCoRTa76rQphHBOYpn4sIol1bCJL9TnOcI4LJajMKHPKfCtVCfiaUXwLZeUTeMOPzA==
    L
    Donoho DL,
    High-dimensional data analysis: The curses and blessings of dimensionality.
    Plenary Lecture, AMS National Meeting on Mathematical Challenges of the 21st Century. 2000.
    gives similar outputs for similar inputs

    View Slide

  35. The interpolation vs extrapolation argument
    https://youtu.be/86ib0sfdFtw
    • If we define 'interpolation' as
    Interpolation occurs for a sample x whenever this
    sample falls inside the given dataset’s convex hull.
    • Then, the paper empirically and theoretically
    demonstrates that "on any high-dimensional (>100)
    dataset, interpolation almost surely never happens."
    • "Those results challenge the validity of our current
    interpolation/extrapolation definition as an indicator of
    generalization performances. "
    • In high dimension, even just determining interpolation
    or extrapolation is already counter-intuitive…
    Balestriero R, Pesenti J, LeCun Y.
    Learning in High Dimension Always Amounts to Extrapolation.
    arXiv [cs.LG]. 2021. http://arxiv.org/abs/2110.09485
    Over 3 hours interview with authors
    @ MLStreetTalk
    sample x
    dataset’s
    convex hull

    View Slide

  36. Assessing ML predictions is intrinsically very hard!
    It is quite obvious that ML correctly makes prediction for the given training data.
    ML predictions must be evaluated by using some data except the given training data,
    but they can mean any data we haven't seen yet.
    ✓ We have no other choice but to use some finite data for assessing any ML predictions.
    ✓ They are already in hand, and unintended cheating (data leakage) is very likely to happen
    ԮTraining ԯValidation ԰Test
    Example/Practice Questions + Answers Practice Tests + Answers Real Test (+ Answers)

    View Slide

  37. Big challenge: Rashomon effect and underspecification
    Rashomon Effect: The multiplicity of good ML models
    In general, we can have many equally good but very different ML models that give equally
    accurate predictions for the given data.

    View Slide

  38. Big challenge: Rashomon effect and underspecification
    Rashomon Effect: The multiplicity of good ML models
    In general, we can have many equally good but very different ML models that give equally
    accurate predictions for the given data.
    • Many explanations can exist for a single set of finite observations in general .
    (whether they are given by ML or by human experts.)

    View Slide

  39. Big challenge: Rashomon effect and underspecification
    Rashomon Effect: The multiplicity of good ML models
    In general, we can have many equally good but very different ML models that give equally
    accurate predictions for the given data.
    • Many explanations can exist for a single set of finite observations in general .
    (whether they are given by ML or by human experts.)
    • They can largely disagree in a underspecified situation where data is statistically insufficient.
    Any ML model will work Different models can give very different predictions for out-of-sample cases
    Neural Network (Tanh) Kernel Ridge (RBF) Neural Network (ReLU)

    View Slide

  40. https://arxiv.org/abs/2011.03395
    https://ai.googleblog.com/2021/10/
    how-underspecification-presents.html
    • We often see ML failures in real-world domains even when we trained them on well-curated
    data that structurally matched with the application domain.
    • "While ML models are validated on held-out data, this validation is often insufficient to
    guarantee that the models will have well-defined behavior when they are used in a new
    setting. "
    Underspecification appears in many practical ML systems?

    View Slide

  41. Berner J, Grohs P, Kutyniok G, Petersen P.
    The Modern Mathematics of Deep Learning. arXiv [cs.LG]. 2021. http://arxiv.org/abs/2105.04026
    Zhang C, Bengio S, Hardt M, Recht B, Vinyals O.
    Understanding deep learning (still) requires rethinking generalization. Commun ACM. 2021;64: 107–115.
    Many points in ML are still open problems!
    Definitely we still need to rethink our traditional understanding on concepts like generalization,
    overfitting, bias-variance tradeoff, interpolation/extrapolation, the curse of dimensionality, etc.
    • Too high expressive power
    Zero training error on random labels. (DL can represent any function / memorize entire data)
    • Benign overfitting (when interpolating noisy training data)
    Low test error even when we have zero training error on noisy training data.
    • Implicit regularization
    Stochastic optimization like SGD prefers low-complexity solutions.

    View Slide

  42. A toy case: 'Benign' zero training error on noisy data
    PolyReg(1)
    RMSE 0.299
    PolyReg(3)
    RMSE 0.28
    PolyReg(5)
    RMSE 0.225
    PolyReg(7)
    RMSE 0.113
    PolyReg(10)
    RMSE 0.0189
    PolyReg(15)
    RMSE 0.00737
    PolyReg(20)
    RMSE 0.000
    PolyReg(30)
    RMSE 0.000
    ExtraTrees (no bootstrap)
    RMSE 0.000
    ExtraTrees (bootstrap)
    RMSE 0.0121
    Random Forest
    RMSE 0.012
    LGBM
    RMSE 0.0508
    95%-CI 95%-CI 95%-CI 95%-CI
    Problematic overfitting by polynomial regression of order k
    clearly overfitted but harmless (still informative)
    also we can assess
    the uncertainty

    View Slide

  43. This talk
    1. What actually ML is?
    2. The dark side: Modern aspects of ML
    3. The light side: Deep learning for molecules
    A quick review on the dark side and light side of ML
    from both viewpoints as an ML algorithm researcher and an ML practitioner/user
    May the ML Force be with you…
    Science is built up of facts, as a house is built of stones;
    but an accumulation of facts is no more a science than
    a heap of stones is a house. Henri Poincaré "Science and hypothesis"
    This slide is available at
    https://itakigawa.github.io/news.html

    View Slide

  44. 1. Regularization (inc. implicit regularization by SGD)
    ML's interests: How to tame the high dimensionality?
    2. Good initial value (warm start) of general use
    Control, restrict, or stabilize the solution space or optimization
    Trying to find the global minimum of
    very bumpy loss landscape…
    Large-scale pretraining and its transfer

    View Slide

  45. 1. Regularization (inc. implicit regularization by SGD)
    ML's interests: How to tame the high dimensionality?
    2. Good initial value (warm start) of general use
    Control, restrict, or stabilize the solution space or optimization
    Trying to find the global minimum of
    very bumpy loss landscape…
    Large-scale pretraining and its transfer
    3. Relevant "inductive bias"
    ML models that can represent any function make worse the risk of
    Rashomon effect, underspecification, and spurious correlation.
    Design inductive biases (features, architectures, models, etc)
    by chemical knowledge, expert intuition, and theory
    so that ML models don't unintentionally represent a function
    that lacks any chemical validity.

    View Slide

  46. Graph Neural Networks (GNNs) in general
    GNN
    Layer
    1
    3
    2 4
    1
    2 3
    4
    5
    6
    1 2 3 4
    1 2 3 4 5 6
    Node
    features
    Edge
    features
    1
    3
    2 4
    1
    2 3
    4
    5
    6
    1 2 3 4
    1 2 3 4 5 6
    Global
    Pooling
    (Readout)
    Graph-level
    Prediction
    Node-level
    Prediction
    Edge-level
    Prediction
    Update
    Update
    Head
    Head
    Head
    × Layers
    Derrow-Pinion A, She J, Wong D,
    Lange O, Hester T, Perez L, et al.
    ETA Prediction with Graph Neural
    Networks in Google Maps.
    CIKM 2021
    Fang X, Huang J, Wang F, Zeng L,
    Liang H, Wang H. ConSTGAT:
    Contextual Spatial-Temporal Graph
    Attention Network for Travel Time
    Estimation at Baidu Maps.
    KDD 2020
    Dong XL, He X, Kan A, Li X, Liang
    Y, Ma J, et al. AutoKnow: Self-
    Driving Knowledge Collection for
    Products of Thousands of
    Types.
    KDD 2020
    Dighe P, Adya S, Li N,
    Vishnubhotla S, Naik D,
    Sagar A, et al. Lattice-Based
    Improvements for Voice
    Triggering Using Graph
    Neural Networks.
    ICASSP 2020
    Travel Time Estimation (Google Maps, Baidu Maps) Siri Triggering (Apple) Knowledge Collection (Amazon)

    View Slide

  47. Graph neural networks for chemical problems
    Topology
    An input graph
    Edge
    Features
    Node
    features
    p1 p2 p3

    Representation
    Learning
    q1 q2 q3

    Classification /
    Regression Head
    Other Info (Conditions, Environment, …)

    View Slide

  48. Molecular graphs
    1. 2.
    1 2 1 0
    2 3 12 0
    3 4 12 0
    4 5 12 0
    5 6 12 0
    6 7 12 0
    7 8 2 0
    7 9 12 0
    9 10 12 0
    10 11 2 0
    10 12 12 0
    12 13 1 0
    9 14 1 0
    6 2 12 0
    12 5 12 0
    1. 2. 3. 4. 5. 6.
    1 C 6 4 3 0 12.011 0
    2 N 7 3 0 0 14.007 1
    3 C 6 3 1 0 12.011 1
    4 N 7 2 0 0 14.007 1
    5 C 6 3 0 0 12.011 1
    6 C 6 3 0 0 12.011 1
    7 C 6 3 0 0 12.011 1
    8 O 8 1 0 0 15.999 0
    9 N 7 3 0 0 14.007 1
    10 C 6 3 0 0 12.011 1
    11 O 8 1 0 0 15.999 0
    12 N 7 3 0 0 14.007 1
    13 C 6 4 3 0 12.011 0
    14 C 6 4 3 0 12.011 0
    8
    11
    12
    2
    9
    4
    6
    5
    7
    10
    3
    13
    1
    14
    Node features Edge features
    1. Atomic number
    2. # of directly-bonded neighbors
    3. # of hydrogens
    4. Formal charge
    5. Atomic mass
    6. Is in a ring?
    1. Bond type
    2. Stereochemistry

    View Slide

  49. Geometric graphs
    Non-geometric node features
    Non-geometric edge features
    + Can be added

    View Slide

  50. https://youtu.be/uF53xsT7mjc
    https://youtu.be/w6Pw4MOzMuo
    ICLR 2021 Keynote (Michael Bronstein) Seminar Talk (Petar Veličković)
    Geometric Deep Learning (GDL)
    Bronstein MM, Bruna J, Cohen T, Veličković P.
    Geometric Deep Learning: Grids, Groups, Graphs, Geodesics, and Gauges.
    arXiv [cs.LG]. 2021. http://arxiv.org/abs/2104.13478
    https://geometricdeeplearning.com

    View Slide

  51. Atz K, Grisoni F, Schneider G.
    Geometric deep learning on molecular representations.
    Nature Machine Intelligence. 2021;3: 1023–1032. https://arxiv.org/abs/2107.12375
    GDL for molecular representations
    We need to consider equivariance
    under E(3) or SE(3) for some
    geometric features (coordinates,
    forces, vector field, etc)

    View Slide

  52. Graph Representation Learning
    p1 p2 p3

    Representation
    Learning
    Topology Node Features
    Edge Features
    We can seek for a good representation vector that can be computed from a molecular graph,
    which is expected to be superior to any man-made descriptors!
    A relatively low-dimensional
    good representation vector

    View Slide

  53. Beyond man-made descriptors
    • 0-Dimensional Descriptors
    • Constitutional descriptors
    • Count descriptors
    • 1-Dimensional Descriptors
    • List of structural fragments
    • Fingerprints
    • 2-Dimensional Descriptors
    • Graph invariants
    • 3-Dimensional Descriptors
    • 3D MoRSE, WHIM, GETAWAY, ...
    • Quantum-chemical descriptors
    • Size, steric, surface, volume, …
    • 4-Dimensional Descriptors
    • GRID, CoMFA, Volsurf, ...
    "Dragon calculates 5,270 molecular
    descriptors"
    "Vol 1 contains an alphabetical
    listing of more than 3,300 descriptors"

    View Slide

  54. Message Passing: The inner workings of GNNs
    N O
    C
    C
    C
    C
    H
    H
    H
    H
    H
    N O
    C
    C
    C
    C
    H
    H
    H
    H
    H
    GNN Layer
    Message Passing
    q1 q2 q3

    Classification /
    Regression Head
    Update features by
    aggregating features
    around each node
    ԮMessage
    Permutation equivariant
    operations
    • NN such as MLPs
    • Edge features usable
    • Sum, Mean or Max
    • Attentive pooling
    ԯAggregate
    Permutation invariant
    operations
    ԰Update
    • NN such as MLPs
    N O
    C
    C
    C
    C
    H
    H
    H
    H
    H
    Readout • Sum, Mean or Max
    • Attentive pooling
    Permutation invariant
    operations

    View Slide

  55. Use Case 1: Virtual Screening (QSAR/QSPR)
    ML
    Activity (Active or Inactive)
    GI50: concentration required
    for 50% inhibition of growth
    NCI Human Tumor Cell
    Line Growth Inhibition
    Assay (PubChem AID 1)
    Active (2,814) Inactive (48,922)
    LogGI50 value
    • Classification Task
    • Regression Task
    Very Noisy, Complex Relationship…

    View Slide

  56. Use Case 1: Virtual Screening (QSAR/QSPR)
    Activity (Active or Inactive)
    LogGI50 value
    • Classification Task
    • Regression Task
    ChemProp
    (Directed MPNN)
    ExtraTrees
    w/ ECFP6(1024)
    Standard ML GNN
    ChemProp (Yang et al, 2019)
    from MIT MLPDS (Machine Learning for Pharmaceutical
    Discovery and Synthesis) Consortium
    95.079% 95.604%
    RMSE 0.6076
    RMSE 0.7970

    View Slide

  57. Use Case 2: Molecule Generation
    Encoder Decoder
    Discriminator
    Generator
    Faez F, Ommi Y, Baghshah MS, Rabiee HR.
    Deep Graph Generators: A Survey.
    IEEE Access. 2021;9: 106675–106702.
    • Autoregressive
    • Reinforcement-learning-based
    Generated
    or
    Actual?
    • Autoencoder-based / Flow-based
    • Adversarial
    Generator Generator
    GNNs are an important
    building block to design
    generation modules.
    The design patterns to
    generate images, sounds,
    texts, are quite useful!

    View Slide

  58. Use Case 3: Fast Approximation for QM Calculations
    input output
    gdb_21014
    1000 sec
    Density Functional Theory (DFT)
    B3LYP/6-31G(2df, p) level
    AAACmnichVHLSsNAFD2Nr1pfVREEXQSL4qpMpagIgiiC4qZVq4KVksSxHZomIZkWavAH/AEXrhRcqB/gB7jxB1z0E8SlghsX3qYBUVFvmMyZM/fcOTNXd0zhScYaEaWtvaOzK9od6+nt6x+IDw7teHbVNXjOsE3b3dM1j5vC4jkppMn3HJdrFd3ku3p5pbm/W+OuJ2xrW9YdflDRipY4EoYmiSrER/IlTfprJ2o+4wl1UV0NQCGeYEkWhPoTpEKQQBgZO36HPA5hw0AVFXBYkIRNaPDo20cKDA5xB/CJcwmJYJ/jBDHSVimLU4ZGbJn+RVrth6xF62ZNL1AbdIpJwyWlikn2yK7ZC3tgt+yJvf9ayw9qNL3UadZbWu4UBk5Ht97+VVVolih9qv70LHGE+cCrIO9OwDRvYbT0teOzl62FzUl/il2yZ/J/wRrsnm5g1V6NqyzfPP/Dj05e6MWoQanv7fgJdmaSqdlkOptOLC2HrYpiDBOYpn7MYQlryCBH9X1c4Aa3yriyrKwrG61UJRJqhvEllO0PT6aXZA==
    ˆ
    H = E
    by solving a one-electron Schrödinger
    equation (Kohn–Sham equation)
    ML
    0.01 sec

    100,000 times faster!
    Quantum mechanical
    calculations
    • Internal energy
    • Free energy
    • Zero point vibrational
    energy
    • Energy of HOMO
    • Energy of LUMO
    • Isotropic polarizabiliity
    • Dipole moment
    • Electronic spatial
    extent
    • Enthalpy
    • Heat capacity
    https://qcarchive.molssi.org/apps/ml_datasets/

    View Slide

  59. Use Case 3: Fast Approximation for QM Calculations
    Predictions for Test Data by SchNet (Schütt et al, 2017) Predictions for Test Data by DimeNet (Klicpera et al, 2020)
    Dipole Moment Energy U
    HOMO
    LUMO Heat Capacity
    Enthalpy H Dipole Moment Energy U
    HOMO
    LUMO Heat Capacity
    Enthalpy H
    GNN predictions are strikingly accurate, in particular, for predicting enegies of a molecule of a
    conformation or forces at each atom to transition towards a more stable conformation!
    y_true
    y_pred
    y_true
    y_pred
    y_true
    y_pred
    y_true
    y_pred
    y_true
    y_pred
    y_true
    y_pred
    y_true
    y_pred
    y_true
    y_pred
    y_true
    y_pred
    y_true
    y_pred
    y_true
    y_pred
    y_true
    y_pred

    View Slide

  60. Graph Regression: to predict the DFT-calculated HOMO-LUMO from 2D molecular graphs
    Dataset: 3,803,453 graphs from PubChemQC (cf. QM9 = 133,885 graphs)
    Rank Test MAE Models
    1 0.1200 (eV) 10 × GNNs (12-layer Graphormer) + 8 × ExpC*s (5-layer ExpandingConv)
    2 0.1204 (eV) 73 × GNNs (11-layer LiteGEMConv ʴ SSL pretraining)
    3 0.1205 (eV) 20 × GNNs (32-layer GNN ʴ Noisy Nodes)
    https://ogb.stanford.edu/kddcup2021/results/
    OGB Large-Scale Challenge (KDDCup 2021)

    View Slide

  61. Pretrained models drive applied DL (ImageNet, BERT, …)
    Many practical applications lack large data, and the use of pretrained models are critical.
    Especially, the models that are pre-trained on broad data at scale and are adaptable to
    a wide range of downstream tasks.
    Call them
    "foundation models"?

    View Slide

  62. Strategies for Pre-training
    Graph Neural Networks
    Hu, Liu, Gomes, Zitnik, Liang,
    Pande, Leskovec (ICLR 2020)
    https://arxiv.org/abs/1905.12265
    Self-Supervised Graph
    Transformer on Large-Scale
    Molecular Data
    Rong, Bian, Xu, Xie, Wei, Huang,
    Huang (NeurIPS 2020)
    https://arxiv.org/abs/
    2007.02835
    Large-scale pretraining by self-supervised learning tasks
    Representation
    learning module
    Representation
    learning module
    Head for
    pretraining
    Head for
    target task
    Target downstream task
    (small-data problem)
    Pretraining
    Large-scale Pretext task
    (often self-supervised)
    Transfer / Calibrate (Fine-Tune)
    SSL tasks
    for molecules

    View Slide

  63. • Euclidean group E(3)ɿ translations, rotations, reflections in 3D
    • Special Euclidean group SE(3)ɿ translations, rotations in 3D
    Schütt et al, SchNet. (2017) https://arxiv.org/abs/1706.08566
    Satorras et al, E(n) Equivariant Graph Neural Networks. (2021) https://arxiv.org/abs/2102.09844
    Anderson et al, Cormorant. (2019) https://arxiv.org/abs/1906.04015
    Unke et al, PhysNet. (2019) https://arxiv.org/abs/1902.08408
    Klicpera et al, DimeNet++. (2020) https://arxiv.org/abs/2011.14115
    Fuchs et al, SE(3)-Transformers. (2021) https://arxiv.org/abs/2006.10503
    Köhler et al, Equivariant Flows (Radial Field). (2020) https://arxiv.org/abs/2006.02425
    Thomas et al, Tensor Field Networks. (2018) https://arxiv.org/abs/1802.08219
    E(3)-equivariant
    E(3)-invariant
    SE(3)-equivariant
    *OWBSJBOU
    &RVJWBSJBOU
    AAACn3ichVFNLwNRFD0d3/VVbITN0FRq07wiiETSsGAlrSoVpJkZrzUxnZnMvDZoJNb+gIUVCYlYsPMDbPwBCz9BLCuxsXA7nUQQ3MnMO/e8e+6c965qG7orGHsKSA2NTc0trW3B9o7Oru5QT++qa5UcjWc0y7CcrKq43NBNnhG6MHjWdrhSVA2+pu7O1/bXytxxdctcEfs23yoqBVPP65oiiMqFBvLRwqa2bQl5b1SelQtyPclH90ZzoTCLMS/knyDugzD8SFqhO2xiGxY0lFAEhwlB2IACl54NxMFgE7eFCnEOId3b5zhEkLQlquJUoRC7S98CZRs+a1Je6+l6ao3+YtDrkFJGhD2yK1ZlD+yaPbP3X3tVvB41L/u0qnUtt3Pdx/3pt39VRVoFdj5Vf3oWyGPa86qTd9tjaqfQ6vrywUk1PbMcqYywc/ZC/s/YE7unE5jlV+0ixZdP//Cjkhe6MRpQ/Ps4foLVsVh8Mjaemggn5vxRtWIQw4jSPKaQwCKSyFD/I1ziBrfSkLQgLUnJeqkU8DV9+BLS+gekOpi/
    f(g · x) = g · f(x)
    AAACl3ichVHLSsNAFD3Gd3206kZxEyyVuilTFRVBLAri0qqtQislSac1mCYhmZZq8Qf8AReCoCAqfoAf4MYfcOEniMsKblx4mwZEi3rDZM6cuefOmbmqbeiuYOy5TWrv6Ozq7ukN9PUPDAZDQ8Np1yo7Gk9plmE5u6rickM3eUrowuC7tsOVkmrwHfVgtbG/U+GOq1vmtji0+V5JKZp6QdcUQVQuNFyIFrNa3hJydUpekgvR6lQuFGYx5oXcCuI+CMOPDSt0jyzysKChjBI4TAjCBhS49GUQB4NN3B5qxDmEdG+f4xgB0pYpi1OGQuwB/Yu0yvisSetGTddTa3SKQcMhpYwIe2K3rM4e2R17YR+/1qp5NRpeDmlWm1pu54Ino1vv/6pKNAvsf6n+9CxQwILnVSfvtsc0bqE19ZWj0/rW4makNsku2Sv5v2DP7IFuYFbetKsk3zz7w49KXujFqEHxn+1oBenpWHwuNpOcDSdW/Fb1YBwTiFI/5pHAOjaQovpVnOMaN9KYtCytSevNVKnN14zgW0jJT5AOlcI=
    f(g · x) = f(x)
    Geometric symmetry: Invariance and equivariance
    Fundamental Requirements for Geometric GNNs:
    The xyz coordinates cannot be directly used as node features.
    We need to consider the invariance and equivariance under the motion group

    View Slide

  64. Edge-aware Message Passing Neural Networks (MPNNs)
    Gilmer J, Schoenholz SS, Riley PF, Vinyals O, Dahl GE.
    Neural Message Passing for Quantum Chemistry.
    ICML 2017
    Faber FA, Hutchison L, Huang B, Gilmer J, Schoenholz SS, Dahl GE, et al.
    Prediction Errors of Molecular Machine Learning Models Lower than Hybrid DFT Error.
    J Chem Theory Comput. 2017;13: 5255–5264.
    Atom features
    Atom type H, C, N, O, F (one-hot)
    Atomic number # of protonns (int)
    Acceptor 0 or 1 (binary)
    Donor 0 or 1 (binary)
    Aromatic 0 or 1 (binary)
    Hybridization sp, sp2, sp3 (one-hot or null
    # of hydrogens (integer)
    Bond features
    Euclidean distace between atom pair (real)
    Bond types
    single, double, triple,
    aromatic (one-hot)
    E(3)-invariant
    xyz are used only as distances

    View Slide

  65. SchNet (Schütt et al, 2017): Standard Geometric GNN
    gdb_3
    Graph
    0
    1 2
    0 1
    2
    edges w/
    cutoff (10Å)
    H2
    O atom features

    0 1 2
    AAACi3ichVHNSgJRFD5Of2aZVpugjSRGKzmWVEgLKYKW/uQPqMjMdLXB+WNmlGzwBVq2aWGbghbRA/QAbXqBFj5CtDRo06LjOBAl2Rnu3O9+93znfvceQZcl00LsebiJyanpGe+sb27evxAILi7lTa1piCwnarJmFAXeZLKkspwlWTIr6gbjFUFmBaFxMNgvtJhhSpp6bLV1VlH4uirVJJG3iCqWBcU+61SxGgxjFJ0IjYKYC8LgRkoLPkIZTkADEZqgAAMVLMIy8GDSV4IYIOjEVcAmziAkOfsMOuAjbZOyGGXwxDboX6dVyWVVWg9qmo5apFNkGgYpQxDBF7zHPj7jA77i55+1bKfGwEubZmGoZXo1cLGS/fhXpdBswem3aqxnC2qw63iVyLvuMINbiEN96/yqn01kIvY63uIb+b/BHj7RDdTWu3iXZpnuGD8CeaEXowbFfrdjFOQ3o7HtaDwdDyf33VZ5YRXWYIP6sQNJOIIU5Jw+XEIXrjk/t8UluL1hKudxNcvwI7jDL6M0kvA=
    x0 AAACi3ichVHLSsNAFL2Nr1qtrboR3BRLxVWZaFEpLooiuOzDPqAtJYnTOjQvkrRYQ3/ApRsXdaPgQvwAP8CNP+CinyAuK7hx4U0aEC3WGyZz5sw9d87MFXWZmRYhfR83MTk1PeOfDczNBxdC4cWlgqm1DInmJU3WjJIomFRmKs1bzJJpSTeooIgyLYrNA2e/2KaGyTT12OrotKoIDZXVmSRYSJUqomKfdWt8LRwlceJGZBTwHoiCF2kt/AgVOAENJGiBAhRUsBDLIICJXxl4IKAjVwUbOQMRc/cpdCGA2hZmUcwQkG3iv4GrssequHZqmq5awlNkHAYqIxAjL+SeDMgzeSCv5PPPWrZbw/HSwVkcaqleC12s5D7+VSk4W3D6rRrr2YI67LpeGXrXXca5hTTUt8+vBrlkNmavk1vyhv5vSJ884Q3U9rt0l6HZ3hg/InrBF8MG8b/bMQoKm3F+O57IJKKpfa9VfliFNdjAfuxACo4gDXm3D5fQg2suyG1xSW5vmMr5PM0y/Aju8AulVJLx
    x1 AAACi3ichVHLSsNAFL2Nr1qtrboR3BRLxVWZ1KJSXBRFcNmHfUBbShLHGpoXybRYQ3/ApRsXdaPgQvwAP8CNP+CinyAuK7hx4U0aEC3WGyZz5sw9d87MFQ1FthghfR83MTk1PeOfDczNBxdC4cWloqW3TIkWJF3RzbIoWFSRNVpgMlNo2TCpoIoKLYnNfWe/1KamJevaEesYtKYKDU0+kSWBIVWuiqp91q0n6uEoiRM3IqOA90AUvMjo4UeowjHoIEELVKCgAUOsgAAWfhXggYCBXA1s5ExEsrtPoQsB1LYwi2KGgGwT/w1cVTxWw7VT03LVEp6i4DBRGYEYeSH3ZECeyQN5JZ9/1rLdGo6XDs7iUEuNeuhiJf/xr0rFmcHpt2qsZwYnsON6ldG74TLOLaShvn1+NcincjF7ndySN/R/Q/rkCW+gtd+luyzN9cb4EdELvhg2iP/djlFQTMT5rXgym4ym97xW+WEV1mAD+7ENaTiEDBTcPlxCD665ILfJpbjdYSrn8zTL8CO4gy+ndJLy
    x2
    0
    0 1
    1
    0 2
    2
    1 2
    bond features
    0.9620 0.9622 1.5133
    AAACp3ichVG7SgNBFD2u72eiNoLNYlC0MEwkqAhC0MbO+EgMGFl211En2Re7m4Cu6cUfsLBSsBDBVnsbf8DCTxBLBRsLbzYLoqLeZXbOnLnnzpm5mmMIz2fssUlqbmlta+/o7Oru6e2LxfsH8p5dcXWe023Ddgua6nFDWDznC9/gBcflqqkZfEMrL9b3N6rc9YRtrfv7Dt8y1V1L7Ahd9YlS4iOuEohSTZ6bl4uHRc0M3Joi5Ek5giVilXiCJVkY8k+QikACUWTt+A2K2IYNHRWY4LDgEzagwqNvEykwOMRtISDOJSTCfY4aukhboSxOGSqxZfrv0mozYi1a12t6oVqnUwwaLilljLIHdsle2D27Yk/s/ddaQVij7mWfZq2h5Y4SOx5ae/tXZdLsY+9T9adnHzuYDb0K8u6ETP0WekNfPTh5WZtbHQ3G2Dl7Jv9n7JHd0Q2s6qt+scJXT//wo5EXejFqUOp7O36C/FQyNZ1Mr6QTmYWoVR0YxgjGqR8zyGAJWeSo/hGucYNbaUJalvJSoZEqNUWaQXwJSf0AKaGdRg==
    rij := kri rj
    k
    AAACjnichVHLSsNAFL2Nr1ofrboR3BRLxVW5kVJFEItuuuzDPqAtJYlTDc2LJK3U0B9wLy4ERcGF+AF+gBt/wEU/QVxWcOPC2zQgWqw3TObMmXvunJkrGops2YhdHzc2PjE55Z8OzMzOzQdDC4sFS2+aEstLuqKbJVGwmCJrLG/LtsJKhskEVVRYUWzs9/eLLWZasq4d2G2DVVXhSJPrsiTYRJUrouqcdGoO8p1aKIIxdCM8DHgPRMCLtB56hAocgg4SNEEFBhrYhBUQwKKvDDwgGMRVwSHOJCS7+ww6ECBtk7IYZQjENuh/RKuyx2q07te0XLVEpyg0TFKGIYoveI89fMYHfMXPP2s5bo2+lzbN4kDLjFrwbDn38a9KpdmG42/VSM821GHL9SqTd8Nl+reQBvrW6UUvt52NOmt4i2/k/wa7+EQ30Frv0l2GZS9H+BHJC70YNYj/3Y5hUNiI8YlYPBOPJPe8VvlhBVZhnfqxCUlIQRry7ouewxVccyEuwe1wu4NUzudpluBHcKkvk/uUNg==
    w01 AAACjnichVFLSwJRFD5OL7OHVpugjSRGKzmKWASR1Malj3yAisxMVxucFzOjYYN/oH20CIqCFtEP6Ae06Q+08CdES4M2LTqOA1GSneHO/e53z3fud+8RdFkyLcSeh5uYnJqe8c765uYXFv2BpeWCqbUMkeVFTdaMksCbTJZUlrckS2Yl3WC8IsisKDQPBvvFNjNMSVMPrY7OqgrfUKW6JPIWUeWKoNgn3ZqNsW4tEMIIOhEcBVEXhMCNtBZ4hAocgQYitEABBipYhGXgwaSvDFFA0Imrgk2cQUhy9hl0wUfaFmUxyuCJbdK/Qauyy6q0HtQ0HbVIp8g0DFIGIYwveI99fMYHfMXPP2vZTo2Blw7NwlDL9Jr/bDX38a9KodmC42/VWM8W1GHb8SqRd91hBrcQh/r26UU/t5MN2xt4i2/k/wZ7+EQ3UNvv4l2GZS/H+BHIC70YNSj6ux2joBCLRBOReCYeSu67rfLCGqzDJvVjC5KQgjTknRc9hyu45gJcgtvl9oapnMfVrMCP4FJflhyUNw==
    w02 AAACjnichVHLSsNAFL2Nr1ofjboR3BRLxVWZlFJFEItuuuzDPqAtJYnTOjQvkrRSQ3/AvbgQFAUX4gf4AW78ARf9BHFZwY0Lb9OAaLHeMJkzZ+65c2auZCjMsgnp+biJyanpGf9sYG5+YTHILy0XLL1lyjQv64puliTRogrTaN5mtkJLhklFVVJoUWoeDPaLbWpaTNcO7Y5Bq6rY0FidyaKNVLkiqc5Jt+YIsW6ND5MocSM0CgQPhMGLtM4/QgWOQAcZWqACBQ1sxAqIYOFXBgEIGMhVwUHORMTcfQpdCKC2hVkUM0Rkm/hv4KrssRquBzUtVy3jKQoOE5UhiJAXck/65Jk8kFfy+Wctx60x8NLBWRpqqVELnq3mPv5VqTjbcPytGuvZhjpsu14ZejdcZnALeahvn170czvZiLNBbskb+r8hPfKEN9Da7/JdhmYvx/iR0Au+GDZI+N2OUVCIRYVENJ6Jh5P7Xqv8sAbrsIn92IIkpCANefdFz+EKrjmeS3C73N4wlfN5mhX4EVzqC5g+lDg=
    w12
    Jørgensen PB, Jacobsen KW,
    Schmidt MN. Neural Message
    Passing with Edge Updates for
    Predicting Properties of
    Molecules and Materials.
    arXiv [stat.ML]. 2018.
    http://arxiv.org/abs/1806.03146
    SchNet-edge-update

    View Slide

  66. nn.Embedding
    128
    AAACi3ichVHNSgJRFD5Of2aZVpugjSRGKzmWVEgLKYKW/uQPqMjMdLXB+WNmlGzwBVq2aWGbghbRA/QAbXqBFj5CtDRo06LjOBAl2Rnu3O9+93znfvceQZcl00LsebiJyanpGe+sb27evxAILi7lTa1piCwnarJmFAXeZLKkspwlWTIr6gbjFUFmBaFxMNgvtJhhSpp6bLV1VlH4uirVJJG3iCqWBcU+61SxGgxjFJ0IjYKYC8LgRkoLPkIZTkADEZqgAAMVLMIy8GDSV4IYIOjEVcAmziAkOfsMOuAjbZOyGGXwxDboX6dVyWVVWg9qmo5apFNkGgYpQxDBF7zHPj7jA77i55+1bKfGwEubZmGoZXo1cLGS/fhXpdBswem3aqxnC2qw63iVyLvuMINbiEN96/yqn01kIvY63uIb+b/BHj7RDdTWu3iXZpnuGD8CeaEXowbFfrdjFOQ3o7HtaDwdDyf33VZ5YRXWYIP6sQNJOIIU5Jw+XEIXrjk/t8UluL1hKudxNcvwI7jDL6M0kvA=
    x0 AAACi3ichVHLSsNAFL2Nr1qtrboR3BRLxVWZaFEpLooiuOzDPqAtJYnTOjQvkrRYQ3/ApRsXdaPgQvwAP8CNP+CinyAuK7hx4U0aEC3WGyZz5sw9d87MFXWZmRYhfR83MTk1PeOfDczNBxdC4cWlgqm1DInmJU3WjJIomFRmKs1bzJJpSTeooIgyLYrNA2e/2KaGyTT12OrotKoIDZXVmSRYSJUqomKfdWt8LRwlceJGZBTwHoiCF2kt/AgVOAENJGiBAhRUsBDLIICJXxl4IKAjVwUbOQMRc/cpdCGA2hZmUcwQkG3iv4GrssequHZqmq5awlNkHAYqIxAjL+SeDMgzeSCv5PPPWrZbw/HSwVkcaqleC12s5D7+VSk4W3D6rRrr2YI67LpeGXrXXca5hTTUt8+vBrlkNmavk1vyhv5vSJ884Q3U9rt0l6HZ3hg/InrBF8MG8b/bMQoKm3F+O57IJKKpfa9VfliFNdjAfuxACo4gDXm3D5fQg2suyG1xSW5vmMr5PM0y/Aju8AulVJLx
    x1 AAACi3ichVHLSsNAFL2Nr1qtrboR3BRLxVWZ1KJSXBRFcNmHfUBbShLHGpoXybRYQ3/ApRsXdaPgQvwAP8CNP+CinyAuK7hx4U0aEC3WGyZz5sw9d87MFQ1FthghfR83MTk1PeOfDczNBxdC4cWloqW3TIkWJF3RzbIoWFSRNVpgMlNo2TCpoIoKLYnNfWe/1KamJevaEesYtKYKDU0+kSWBIVWuiqp91q0n6uEoiRM3IqOA90AUvMjo4UeowjHoIEELVKCgAUOsgAAWfhXggYCBXA1s5ExEsrtPoQsB1LYwi2KGgGwT/w1cVTxWw7VT03LVEp6i4DBRGYEYeSH3ZECeyQN5JZ9/1rLdGo6XDs7iUEuNeuhiJf/xr0rFmcHpt2qsZwYnsON6ldG74TLOLaShvn1+NcincjF7ndySN/R/Q/rkCW+gtd+luyzN9cb4EdELvhg2iP/djlFQTMT5rXgym4ym97xW+WEV1mAD+7ENaTiEDBTcPlxCD665ILfJpbjdYSrn8zTL8CO4gy+ndJLy
    x2
    SchNet (Schütt et al, 2017): Standard Geometric GNN
    gdb_3
    Graph
    0
    1 2
    0 1
    2
    edges w/
    cutoff (10Å)
    H2
    O atom features

    0 1 2
    0
    0 1
    1
    0 2
    2
    1 2
    bond features
    0.9620 0.9622 1.5133
    AAACp3ichVG7SgNBFD2u72eiNoLNYlC0MEwkqAhC0MbO+EgMGFl211En2Re7m4Cu6cUfsLBSsBDBVnsbf8DCTxBLBRsLbzYLoqLeZXbOnLnnzpm5mmMIz2fssUlqbmlta+/o7Oru6e2LxfsH8p5dcXWe023Ddgua6nFDWDznC9/gBcflqqkZfEMrL9b3N6rc9YRtrfv7Dt8y1V1L7Ahd9YlS4iOuEohSTZ6bl4uHRc0M3Joi5Ek5giVilXiCJVkY8k+QikACUWTt+A2K2IYNHRWY4LDgEzagwqNvEykwOMRtISDOJSTCfY4aukhboSxOGSqxZfrv0mozYi1a12t6oVqnUwwaLilljLIHdsle2D27Yk/s/ddaQVij7mWfZq2h5Y4SOx5ae/tXZdLsY+9T9adnHzuYDb0K8u6ETP0WekNfPTh5WZtbHQ3G2Dl7Jv9n7JHd0Q2s6qt+scJXT//wo5EXejFqUOp7O36C/FQyNZ1Mr6QTmYWoVR0YxgjGqR8zyGAJWeSo/hGucYNbaUJalvJSoZEqNUWaQXwJSf0AKaGdRg==
    rij := kri rj
    k
    AAACjnichVHLSsNAFL2Nr1ofrboR3BRLxVW5kVJFEItuuuzDPqAtJYlTDc2LJK3U0B9wLy4ERcGF+AF+gBt/wEU/QVxWcOPC2zQgWqw3TObMmXvunJkrGops2YhdHzc2PjE55Z8OzMzOzQdDC4sFS2+aEstLuqKbJVGwmCJrLG/LtsJKhskEVVRYUWzs9/eLLWZasq4d2G2DVVXhSJPrsiTYRJUrouqcdGoO8p1aKIIxdCM8DHgPRMCLtB56hAocgg4SNEEFBhrYhBUQwKKvDDwgGMRVwSHOJCS7+ww6ECBtk7IYZQjENuh/RKuyx2q07te0XLVEpyg0TFKGIYoveI89fMYHfMXPP2s5bo2+lzbN4kDLjFrwbDn38a9KpdmG42/VSM821GHL9SqTd8Nl+reQBvrW6UUvt52NOmt4i2/k/wa7+EQ30Frv0l2GZS9H+BHJC70YNYj/3Y5hUNiI8YlYPBOPJPe8VvlhBVZhnfqxCUlIQRry7ouewxVccyEuwe1wu4NUzudpluBHcKkvk/uUNg==
    w01 AAACjnichVFLSwJRFD5OL7OHVpugjSRGKzmKWASR1Malj3yAisxMVxucFzOjYYN/oH20CIqCFtEP6Ae06Q+08CdES4M2LTqOA1GSneHO/e53z3fud+8RdFkyLcSeh5uYnJqe8c765uYXFv2BpeWCqbUMkeVFTdaMksCbTJZUlrckS2Yl3WC8IsisKDQPBvvFNjNMSVMPrY7OqgrfUKW6JPIWUeWKoNgn3ZqNsW4tEMIIOhEcBVEXhMCNtBZ4hAocgQYitEABBipYhGXgwaSvDFFA0Imrgk2cQUhy9hl0wUfaFmUxyuCJbdK/Qauyy6q0HtQ0HbVIp8g0DFIGIYwveI99fMYHfMXPP2vZTo2Blw7NwlDL9Jr/bDX38a9KodmC42/VWM8W1GHb8SqRd91hBrcQh/r26UU/t5MN2xt4i2/k/wZ7+EQ3UNvv4l2GZS/H+BHIC70YNSj6ux2joBCLRBOReCYeSu67rfLCGqzDJvVjC5KQgjTknRc9hyu45gJcgtvl9oapnMfVrMCP4FJflhyUNw==
    w02 AAACjnichVHLSsNAFL2Nr1ofjboR3BRLxVWZlFJFEItuuuzDPqAtJYnTOjQvkrRSQ3/AvbgQFAUX4gf4AW78ARf9BHFZwY0Lb9OAaLHeMJkzZ+65c2auZCjMsgnp+biJyanpGf9sYG5+YTHILy0XLL1lyjQv64puliTRogrTaN5mtkJLhklFVVJoUWoeDPaLbWpaTNcO7Y5Bq6rY0FidyaKNVLkiqc5Jt+YIsW6ND5MocSM0CgQPhMGLtM4/QgWOQAcZWqACBQ1sxAqIYOFXBgEIGMhVwUHORMTcfQpdCKC2hVkUM0Rkm/hv4KrssRquBzUtVy3jKQoOE5UhiJAXck/65Jk8kFfy+Wctx60x8NLBWRpqqVELnq3mPv5VqTjbcPytGuvZhjpsu14ZejdcZnALeahvn170czvZiLNBbskb+r8hPfKEN9Da7/JdhmYvx/iR0Au+GDZI+N2OUVCIRYVENJ6Jh5P7Xqv8sAbrsIn92IIkpCANefdFz+EKrjmeS3C73N4wlfN5mhX4EVzqC5g+lDg=
    w12
    Jørgensen PB, Jacobsen KW,
    Schmidt MN. Neural Message
    Passing with Edge Updates for
    Predicting Properties of
    Molecules and Materials.
    arXiv [stat.ML]. 2018.
    http://arxiv.org/abs/1806.03146
    SchNet-edge-update

    View Slide

  67. nn.Embedding
    128
    AAACi3ichVHNSgJRFD5Of2aZVpugjSRGKzmWVEgLKYKW/uQPqMjMdLXB+WNmlGzwBVq2aWGbghbRA/QAbXqBFj5CtDRo06LjOBAl2Rnu3O9+93znfvceQZcl00LsebiJyanpGe+sb27evxAILi7lTa1piCwnarJmFAXeZLKkspwlWTIr6gbjFUFmBaFxMNgvtJhhSpp6bLV1VlH4uirVJJG3iCqWBcU+61SxGgxjFJ0IjYKYC8LgRkoLPkIZTkADEZqgAAMVLMIy8GDSV4IYIOjEVcAmziAkOfsMOuAjbZOyGGXwxDboX6dVyWVVWg9qmo5apFNkGgYpQxDBF7zHPj7jA77i55+1bKfGwEubZmGoZXo1cLGS/fhXpdBswem3aqxnC2qw63iVyLvuMINbiEN96/yqn01kIvY63uIb+b/BHj7RDdTWu3iXZpnuGD8CeaEXowbFfrdjFOQ3o7HtaDwdDyf33VZ5YRXWYIP6sQNJOIIU5Jw+XEIXrjk/t8UluL1hKudxNcvwI7jDL6M0kvA=
    x0 AAACi3ichVHLSsNAFL2Nr1qtrboR3BRLxVWZaFEpLooiuOzDPqAtJYnTOjQvkrRYQ3/ApRsXdaPgQvwAP8CNP+CinyAuK7hx4U0aEC3WGyZz5sw9d87MFXWZmRYhfR83MTk1PeOfDczNBxdC4cWlgqm1DInmJU3WjJIomFRmKs1bzJJpSTeooIgyLYrNA2e/2KaGyTT12OrotKoIDZXVmSRYSJUqomKfdWt8LRwlceJGZBTwHoiCF2kt/AgVOAENJGiBAhRUsBDLIICJXxl4IKAjVwUbOQMRc/cpdCGA2hZmUcwQkG3iv4GrssequHZqmq5awlNkHAYqIxAjL+SeDMgzeSCv5PPPWrZbw/HSwVkcaqleC12s5D7+VSk4W3D6rRrr2YI67LpeGXrXXca5hTTUt8+vBrlkNmavk1vyhv5vSJ884Q3U9rt0l6HZ3hg/InrBF8MG8b/bMQoKm3F+O57IJKKpfa9VfliFNdjAfuxACo4gDXm3D5fQg2suyG1xSW5vmMr5PM0y/Aju8AulVJLx
    x1 AAACi3ichVHLSsNAFL2Nr1qtrboR3BRLxVWZ1KJSXBRFcNmHfUBbShLHGpoXybRYQ3/ApRsXdaPgQvwAP8CNP+CinyAuK7hx4U0aEC3WGyZz5sw9d87MFQ1FthghfR83MTk1PeOfDczNBxdC4cWloqW3TIkWJF3RzbIoWFSRNVpgMlNo2TCpoIoKLYnNfWe/1KamJevaEesYtKYKDU0+kSWBIVWuiqp91q0n6uEoiRM3IqOA90AUvMjo4UeowjHoIEELVKCgAUOsgAAWfhXggYCBXA1s5ExEsrtPoQsB1LYwi2KGgGwT/w1cVTxWw7VT03LVEp6i4DBRGYEYeSH3ZECeyQN5JZ9/1rLdGo6XDs7iUEuNeuhiJf/xr0rFmcHpt2qsZwYnsON6ldG74TLOLaShvn1+NcincjF7ndySN/R/Q/rkCW+gtd+luyzN9cb4EdELvhg2iP/djlFQTMT5rXgym4ym97xW+WEV1mAD+7ENaTiEDBTcPlxCD665ILfJpbjdYSrn8zTL8CO4gy+ndJLy
    x2
    SchNet (Schütt et al, 2017): Standard Geometric GNN
    gdb_3
    Graph
    0
    1 2
    0 1
    2
    edges w/
    cutoff (10Å)
    H2
    O atom features

    0 1 2
    0
    0 1
    1
    0 2
    2
    1 2
    bond features
    0.9620 0.9622 1.5133
    AAACp3ichVG7SgNBFD2u72eiNoLNYlC0MEwkqAhC0MbO+EgMGFl211En2Re7m4Cu6cUfsLBSsBDBVnsbf8DCTxBLBRsLbzYLoqLeZXbOnLnnzpm5mmMIz2fssUlqbmlta+/o7Oru6e2LxfsH8p5dcXWe023Ddgua6nFDWDznC9/gBcflqqkZfEMrL9b3N6rc9YRtrfv7Dt8y1V1L7Ahd9YlS4iOuEohSTZ6bl4uHRc0M3Joi5Ek5giVilXiCJVkY8k+QikACUWTt+A2K2IYNHRWY4LDgEzagwqNvEykwOMRtISDOJSTCfY4aukhboSxOGSqxZfrv0mozYi1a12t6oVqnUwwaLilljLIHdsle2D27Yk/s/ddaQVij7mWfZq2h5Y4SOx5ae/tXZdLsY+9T9adnHzuYDb0K8u6ETP0WekNfPTh5WZtbHQ3G2Dl7Jv9n7JHd0Q2s6qt+scJXT//wo5EXejFqUOp7O36C/FQyNZ1Mr6QTmYWoVR0YxgjGqR8zyGAJWeSo/hGucYNbaUJalvJSoZEqNUWaQXwJSf0AKaGdRg==
    rij := kri rj
    k
    Gaussian Smearing
    MLP (+ cutoff function)
    AAACjnichVHLSsNAFL2Nr1ofrboR3BRLxVW5kVJFEItuuuzDPqAtJYlTDc2LJK3U0B9wLy4ERcGF+AF+gBt/wEU/QVxWcOPC2zQgWqw3TObMmXvunJkrGops2YhdHzc2PjE55Z8OzMzOzQdDC4sFS2+aEstLuqKbJVGwmCJrLG/LtsJKhskEVVRYUWzs9/eLLWZasq4d2G2DVVXhSJPrsiTYRJUrouqcdGoO8p1aKIIxdCM8DHgPRMCLtB56hAocgg4SNEEFBhrYhBUQwKKvDDwgGMRVwSHOJCS7+ww6ECBtk7IYZQjENuh/RKuyx2q07te0XLVEpyg0TFKGIYoveI89fMYHfMXPP2s5bo2+lzbN4kDLjFrwbDn38a9KpdmG42/VSM821GHL9SqTd8Nl+reQBvrW6UUvt52NOmt4i2/k/wa7+EQ30Frv0l2GZS9H+BHJC70YNYj/3Y5hUNiI8YlYPBOPJPe8VvlhBVZhnfqxCUlIQRry7ouewxVccyEuwe1wu4NUzudpluBHcKkvk/uUNg==
    w01 AAACjnichVFLSwJRFD5OL7OHVpugjSRGKzmKWASR1Malj3yAisxMVxucFzOjYYN/oH20CIqCFtEP6Ae06Q+08CdES4M2LTqOA1GSneHO/e53z3fud+8RdFkyLcSeh5uYnJqe8c765uYXFv2BpeWCqbUMkeVFTdaMksCbTJZUlrckS2Yl3WC8IsisKDQPBvvFNjNMSVMPrY7OqgrfUKW6JPIWUeWKoNgn3ZqNsW4tEMIIOhEcBVEXhMCNtBZ4hAocgQYitEABBipYhGXgwaSvDFFA0Imrgk2cQUhy9hl0wUfaFmUxyuCJbdK/Qauyy6q0HtQ0HbVIp8g0DFIGIYwveI99fMYHfMXPP2vZTo2Blw7NwlDL9Jr/bDX38a9KodmC42/VWM8W1GHb8SqRd91hBrcQh/r26UU/t5MN2xt4i2/k/wZ7+EQ3UNvv4l2GZS/H+BHIC70YNSj6ux2joBCLRBOReCYeSu67rfLCGqzDJvVjC5KQgjTknRc9hyu45gJcgtvl9oapnMfVrMCP4FJflhyUNw==
    w02 AAACjnichVHLSsNAFL2Nr1ofjboR3BRLxVWZlFJFEItuuuzDPqAtJYnTOjQvkrRSQ3/AvbgQFAUX4gf4AW78ARf9BHFZwY0Lb9OAaLHeMJkzZ+65c2auZCjMsgnp+biJyanpGf9sYG5+YTHILy0XLL1lyjQv64puliTRogrTaN5mtkJLhklFVVJoUWoeDPaLbWpaTNcO7Y5Bq6rY0FidyaKNVLkiqc5Jt+YIsW6ND5MocSM0CgQPhMGLtM4/QgWOQAcZWqACBQ1sxAqIYOFXBgEIGMhVwUHORMTcfQpdCKC2hVkUM0Rkm/hv4KrssRquBzUtVy3jKQoOE5UhiJAXck/65Jk8kFfy+Wctx60x8NLBWRpqqVELnq3mPv5VqTjbcPytGuvZhjpsu14ZejdcZnALeahvn170czvZiLNBbskb+r8hPfKEN9Da7/JdhmYvx/iR0Au+GDZI+N2OUVCIRYVENJ6Jh5P7Xqv8sAbrsIn92IIkpCANefdFz+EKrjmeS3C73N4wlfN5mhX4EVzqC5g+lDg=
    w12
    128
    50
    Jørgensen PB, Jacobsen KW,
    Schmidt MN. Neural Message
    Passing with Edge Updates for
    Predicting Properties of
    Molecules and Materials.
    arXiv [stat.ML]. 2018.
    http://arxiv.org/abs/1806.03146
    SchNet-edge-update

    View Slide

  68. nn.Embedding
    128
    AAACi3ichVHNSgJRFD5Of2aZVpugjSRGKzmWVEgLKYKW/uQPqMjMdLXB+WNmlGzwBVq2aWGbghbRA/QAbXqBFj5CtDRo06LjOBAl2Rnu3O9+93znfvceQZcl00LsebiJyanpGe+sb27evxAILi7lTa1piCwnarJmFAXeZLKkspwlWTIr6gbjFUFmBaFxMNgvtJhhSpp6bLV1VlH4uirVJJG3iCqWBcU+61SxGgxjFJ0IjYKYC8LgRkoLPkIZTkADEZqgAAMVLMIy8GDSV4IYIOjEVcAmziAkOfsMOuAjbZOyGGXwxDboX6dVyWVVWg9qmo5apFNkGgYpQxDBF7zHPj7jA77i55+1bKfGwEubZmGoZXo1cLGS/fhXpdBswem3aqxnC2qw63iVyLvuMINbiEN96/yqn01kIvY63uIb+b/BHj7RDdTWu3iXZpnuGD8CeaEXowbFfrdjFOQ3o7HtaDwdDyf33VZ5YRXWYIP6sQNJOIIU5Jw+XEIXrjk/t8UluL1hKudxNcvwI7jDL6M0kvA=
    x0 AAACi3ichVHLSsNAFL2Nr1qtrboR3BRLxVWZaFEpLooiuOzDPqAtJYnTOjQvkrRYQ3/ApRsXdaPgQvwAP8CNP+CinyAuK7hx4U0aEC3WGyZz5sw9d87MFXWZmRYhfR83MTk1PeOfDczNBxdC4cWlgqm1DInmJU3WjJIomFRmKs1bzJJpSTeooIgyLYrNA2e/2KaGyTT12OrotKoIDZXVmSRYSJUqomKfdWt8LRwlceJGZBTwHoiCF2kt/AgVOAENJGiBAhRUsBDLIICJXxl4IKAjVwUbOQMRc/cpdCGA2hZmUcwQkG3iv4GrssequHZqmq5awlNkHAYqIxAjL+SeDMgzeSCv5PPPWrZbw/HSwVkcaqleC12s5D7+VSk4W3D6rRrr2YI67LpeGXrXXca5hTTUt8+vBrlkNmavk1vyhv5vSJ884Q3U9rt0l6HZ3hg/InrBF8MG8b/bMQoKm3F+O57IJKKpfa9VfliFNdjAfuxACo4gDXm3D5fQg2suyG1xSW5vmMr5PM0y/Aju8AulVJLx
    x1 AAACi3ichVHLSsNAFL2Nr1qtrboR3BRLxVWZ1KJSXBRFcNmHfUBbShLHGpoXybRYQ3/ApRsXdaPgQvwAP8CNP+CinyAuK7hx4U0aEC3WGyZz5sw9d87MFQ1FthghfR83MTk1PeOfDczNBxdC4cWloqW3TIkWJF3RzbIoWFSRNVpgMlNo2TCpoIoKLYnNfWe/1KamJevaEesYtKYKDU0+kSWBIVWuiqp91q0n6uEoiRM3IqOA90AUvMjo4UeowjHoIEELVKCgAUOsgAAWfhXggYCBXA1s5ExEsrtPoQsB1LYwi2KGgGwT/w1cVTxWw7VT03LVEp6i4DBRGYEYeSH3ZECeyQN5JZ9/1rLdGo6XDs7iUEuNeuhiJf/xr0rFmcHpt2qsZwYnsON6ldG74TLOLaShvn1+NcincjF7ndySN/R/Q/rkCW+gtd+luyzN9cb4EdELvhg2iP/djlFQTMT5rXgym4ym97xW+WEV1mAD+7ENaTiEDBTcPlxCD665ILfJpbjdYSrn8zTL8CO4gy+ndJLy
    x2
    SchNet (Schütt et al, 2017): Standard Geometric GNN
    gdb_3
    Graph
    0
    1 2
    0 1
    2
    edges w/
    cutoff (10Å)
    H2
    O atom features

    0 1 2
    0
    0 1
    1
    0 2
    2
    1 2
    bond features
    0.9620 0.9622 1.5133
    AAACp3ichVG7SgNBFD2u72eiNoLNYlC0MEwkqAhC0MbO+EgMGFl211En2Re7m4Cu6cUfsLBSsBDBVnsbf8DCTxBLBRsLbzYLoqLeZXbOnLnnzpm5mmMIz2fssUlqbmlta+/o7Oru6e2LxfsH8p5dcXWe023Ddgua6nFDWDznC9/gBcflqqkZfEMrL9b3N6rc9YRtrfv7Dt8y1V1L7Ahd9YlS4iOuEohSTZ6bl4uHRc0M3Joi5Ek5giVilXiCJVkY8k+QikACUWTt+A2K2IYNHRWY4LDgEzagwqNvEykwOMRtISDOJSTCfY4aukhboSxOGSqxZfrv0mozYi1a12t6oVqnUwwaLilljLIHdsle2D27Yk/s/ddaQVij7mWfZq2h5Y4SOx5ae/tXZdLsY+9T9adnHzuYDb0K8u6ETP0WekNfPTh5WZtbHQ3G2Dl7Jv9n7JHd0Q2s6qt+scJXT//wo5EXejFqUOp7O36C/FQyNZ1Mr6QTmYWoVR0YxgjGqR8zyGAJWeSo/hGucYNbaUJalvJSoZEqNUWaQXwJSf0AKaGdRg==
    rij := kri rj
    k
    Gaussian Smearing
    MLP (+ cutoff function)
    AAACjnichVHLSsNAFL2Nr1ofrboR3BRLxVW5kVJFEItuuuzDPqAtJYlTDc2LJK3U0B9wLy4ERcGF+AF+gBt/wEU/QVxWcOPC2zQgWqw3TObMmXvunJkrGops2YhdHzc2PjE55Z8OzMzOzQdDC4sFS2+aEstLuqKbJVGwmCJrLG/LtsJKhskEVVRYUWzs9/eLLWZasq4d2G2DVVXhSJPrsiTYRJUrouqcdGoO8p1aKIIxdCM8DHgPRMCLtB56hAocgg4SNEEFBhrYhBUQwKKvDDwgGMRVwSHOJCS7+ww6ECBtk7IYZQjENuh/RKuyx2q07te0XLVEpyg0TFKGIYoveI89fMYHfMXPP2s5bo2+lzbN4kDLjFrwbDn38a9KpdmG42/VSM821GHL9SqTd8Nl+reQBvrW6UUvt52NOmt4i2/k/wa7+EQ30Frv0l2GZS9H+BHJC70YNYj/3Y5hUNiI8YlYPBOPJPe8VvlhBVZhnfqxCUlIQRry7ouewxVccyEuwe1wu4NUzudpluBHcKkvk/uUNg==
    w01 AAACjnichVFLSwJRFD5OL7OHVpugjSRGKzmKWASR1Malj3yAisxMVxucFzOjYYN/oH20CIqCFtEP6Ae06Q+08CdES4M2LTqOA1GSneHO/e53z3fud+8RdFkyLcSeh5uYnJqe8c765uYXFv2BpeWCqbUMkeVFTdaMksCbTJZUlrckS2Yl3WC8IsisKDQPBvvFNjNMSVMPrY7OqgrfUKW6JPIWUeWKoNgn3ZqNsW4tEMIIOhEcBVEXhMCNtBZ4hAocgQYitEABBipYhGXgwaSvDFFA0Imrgk2cQUhy9hl0wUfaFmUxyuCJbdK/Qauyy6q0HtQ0HbVIp8g0DFIGIYwveI99fMYHfMXPP2vZTo2Blw7NwlDL9Jr/bDX38a9KodmC42/VWM8W1GHb8SqRd91hBrcQh/r26UU/t5MN2xt4i2/k/wZ7+EQ3UNvv4l2GZS/H+BHIC70YNSj6ux2joBCLRBOReCYeSu67rfLCGqzDJvVjC5KQgjTknRc9hyu45gJcgtvl9oapnMfVrMCP4FJflhyUNw==
    w02 AAACjnichVHLSsNAFL2Nr1ofjboR3BRLxVWZlFJFEItuuuzDPqAtJYnTOjQvkrRSQ3/AvbgQFAUX4gf4AW78ARf9BHFZwY0Lb9OAaLHeMJkzZ+65c2auZCjMsgnp+biJyanpGf9sYG5+YTHILy0XLL1lyjQv64puliTRogrTaN5mtkJLhklFVVJoUWoeDPaLbWpaTNcO7Y5Bq6rY0FidyaKNVLkiqc5Jt+YIsW6ND5MocSM0CgQPhMGLtM4/QgWOQAcZWqACBQ1sxAqIYOFXBgEIGMhVwUHORMTcfQpdCKC2hVkUM0Rkm/hv4KrssRquBzUtVy3jKQoOE5UhiJAXck/65Jk8kFfy+Wctx60x8NLBWRpqqVELnq3mPv5VqTjbcPytGuvZhjpsu14ZejdcZnALeahvn170czvZiLNBbskb+r8hPfKEN9Da7/JdhmYvx/iR0Au+GDZI+N2OUVCIRYVENJ6Jh5P7Xqv8sAbrsIn92IIkpCANefdFz+EKrjmeS3C73N4wlfN5mhX4EVzqC5g+lDg=
    w12
    128
    50
    AAAC9XichVHNShxBEK6d+BeNuiaXgJchi7IiLL0iieQk5pKT+Lcq2DL0jL27vfZMDz29a3SYF8gL5BByiKgQcvDoA3jxBRLwEYJHBS8erJ0dEqKoNcz011/VV/N1lxtKERlCznPWs67unt6+5/0DLwaHhvMjL1cj1dQer3hKKr3usohLEfCKEUby9VBz5ruSr7nbH9r5tRbXkVDBitkN+abPaoGoCo8ZpJx8SF0//pQ4wqaSVw3TWu3Yf7lJm4aRSDNFGjV9J27YVAQ29Zmpe0zG81iVYFFdFDNRY8KmakuZtAlVPq+xxIlFI6Fa1OpmwskXSImkYd8H5QwUIIsFlT8BClugwIMm+MAhAINYAoMInw0oA4EQuU2IkdOIRJrnkEA/aptYxbGCIbuN3xruNjI2wH27Z5SqPfyLxFej0oYx8ov8IJfkjPwkf8jNg73itEfbyy6ubkfLQ2f48+vl6ydVPq4G6v9Uj3o2UIWZ1KtA72HKtE/hdfStvS+Xy++XxuJxsk8u0P93ck5O8QRB68o7XORLXx/x46IXvDEcUPnuOO6D1alS+W1penG6MDuXjaoPRuENFHEe72AWPsICVLD/b7jJded6rB3rm3VgHXVKrVymeQX/hXV8C560vMU=
    xi xi +
    0
    @
    X
    j2Ni
    (xj) !ij
    1
    A
    Message Passing with
    residual connections
    AAACi3ichVHLSsNAFL2Nr1qtrboR3BRLxVWZaFEpLooiuOzDPqAtJYnTOjQvkrRYQ3/ApRsXdaPgQvwAP8CNP+CinyAuK7hx4U0aEC3WGyZz5sw9d87MFXWZmRYhfR83MTk1PeOfDczNBxdC4cWlgqm1DInmJU3WjJIomFRmKs1bzJJpSTeooIgyLYrNA2e/2KaGyTT12OrotKoIDZXVmSRYSJUqomKfdWusFo6SOHEjMgp4D0TBi7QWfoQKnIAGErRAAQoqWIhlEMDErww8ENCRq4KNnIGIufsUuhBAbQuzKGYIyDbx38BV2WNVXDs1TVct4SkyDgOVEYiRF3JPBuSZPJBX8vlnLdut4Xjp4CwOtVSvhS5Wch//qhScLTj9Vo31bEEddl2vDL3rLuPcQhrq2+dXg1wyG7PXyS15Q/83pE+e8AZq+126y9Bsb4wfEb3gi2GD+N/tGAWFzTi/HU9kEtHUvtcqP6zCGmxgP3YgBUeQhrzbh0vowTUX5La4JLc3TOV8nmYZfgR3+AUcY5Mp
    xi
    AAACi3ichVHLSsNAFL2Nr1qtrboR3BRLxVWZaFEpLooiuOzDPqAtJYljjc2LZFqsoT/g0o2LulFwIX6AH+DGH3DRTxCXFdy48CYNiBbrDZM5c+aeO2fmioYiW4yQno8bG5+YnPJPB2Zmg3Oh8PxCwdKbpkTzkq7oZkkULKrIGs0zmSm0ZJhUUEWFFsXGnrNfbFHTknXtkLUNWlWFuiYfy5LAkCpVRNU+69ROa+EoiRM3IsOA90AUvEjr4UeowBHoIEETVKCgAUOsgAAWfmXggYCBXBVs5ExEsrtPoQMB1DYxi2KGgGwD/3VclT1Ww7VT03LVEp6i4DBRGYEYeSH3pE+eyQN5JZ9/1rLdGo6XNs7iQEuNWuhiKffxr0rFmcHJt2qkZwbHsO16ldG74TLOLaSBvnV+1c8lszF7ldySN/R/Q3rkCW+gtd6luwzNdkf4EdELvhg2iP/djmFQWI/zm/FEJhFN7Xqt8sMyrMAa9mMLUnAAaci7fbiELlxzQW6DS3I7g1TO52kW4Udw+18eg5Mq
    xj AAACjXichVHLSsNAFD2Nr/ps1Y3gRiyKqzKR+kBERBe6VGtVfFCSOOrQvEjSYg39AdeCC1FQcCF+gB/gxh9w0U8QlwpuXHiTBkSL9YbJnDlzz50zc1VbF67HWDUmNTW3tLbF2zs6u7p7Esnevg3XKjoaz2mWbjlbquJyXZg85wlP51u2wxVD1fmmWlgM9jdL3HGFZa57ZZvvGcqhKQ6EpnhEbe+qhn9cyfuFSj6ZYmkWxlA9kCOQQhQrVvIBu9iHBQ1FGOAw4RHWocClbwcyGGzi9uAT5xAS4T5HBR2kLVIWpwyF2AL9D2m1E7EmrYOabqjW6BSdhkPKIYywZ3bH3tgTu2cv7PPPWn5YI/BSplmtabmdT5wOZD/+VRk0ezj6VjX07OEA06FXQd7tkAluodX0pZPzt+zM2og/ym7YK/m/ZlX2SDcwS+/a7Spfu2jgRyUv9GLUIPl3O+rBxnhankxnVjOp+YWoVXEMYhhj1I8pzGMZK8hRfRNnuMSVlJAmpFlprpYqxSJNP36EtPQFgjSUNw==
    xk
    AAACjnichVHLSsNAFL2Nr1ofjboR3BRLxVWZSqkiiEU3XfZhH9CWksRpHZsXSVqpoT/gXlwIioIL8QP8ADf+gIt+gris4MaFN2lAtFhvmMyZM/fcOTNX1GVmWoT0fNzY+MTklH86MDM7Nx/kFxYLptYyJJqXNFkzSqJgUpmpNG8xS6Yl3aCCIsq0KDb3nf1imxom09QDq6PTqiI0VFZnkmAhVa6Iin3SrdnsuFvjwyRK3AgNg5gHwuBFWuMfoQKHoIEELVCAggoWYhkEMPErQwwI6MhVwUbOQMTcfQpdCKC2hVkUMwRkm/hv4KrssSqunZqmq5bwFBmHgcoQRMgLuSd98kweyCv5/LOW7dZwvHRwFgdaqteCZ8u5j39VCs4WHH2rRnq2oA5brleG3nWXcW4hDfTt04t+bjsbsdfILXlD/zekR57wBmr7XbrL0OzlCD8iesEXwwbFfrdjGBQ2orFENJ6Jh5N7Xqv8sAKrsI792IQkpCANefdFz+EKrjmeS3A73O4glfN5miX4EVzqC4b1lKg=
    wij AAACjnichVHLSsNAFL2Nr1ofjboR3BRLxVWZSKkiiEU3XfZhH9CWksSpDs2LJK3U0B9wLy4ERcGF+AF+gBt/wEU/QVxWcOPCmzQgWqw3TObMmXvunJkrGQqzbEJ6AW5sfGJyKjgdmpmdmw/zC4tFS2+ZMi3IuqKbZUm0qMI0WrCZrdCyYVJRlRRakpr77n6pTU2L6dqB3TFoTRWPNNZgsmgjValKqnPSrTus2a3zURInXkSGgeCDKPiR0flHqMIh6CBDC1SgoIGNWAERLPwqIAABA7kaOMiZiJi3T6ELIdS2MItihohsE/9HuKr4rIZrt6blqWU8RcFhojICMfJC7kmfPJMH8ko+/6zleDVcLx2cpYGWGvXw2XL+41+VirMNx9+qkZ5taMCW55Whd8Nj3FvIA3379KKf387FnDVyS97Q/w3pkSe8gdZ+l++yNHc5wo+EXvDFsEHC73YMg+JGXEjGE9lENLXntyoIK7AK69iPTUhBGjJQ8F70HK7gmuO5JLfD7Q5SuYCvWYIfwaW/AIkWlKk=
    wik
    Element-wise
    multiplication
    NN (MLP etc)
    Neighboring
    nodes
    Jørgensen PB, Jacobsen KW,
    Schmidt MN. Neural Message
    Passing with Edge Updates for
    Predicting Properties of
    Molecules and Materials.
    arXiv [stat.ML]. 2018.
    http://arxiv.org/abs/1806.03146
    SchNet-edge-update

    View Slide

  69. QSAR/QSPR, QM Approximation, Molecule Generations, …
    (FP.PM
    (FN/FU
    Klicpera et al (NeurIPS2021)
    https://arxiv.org/abs/2106.08903
    Ganea et al (NeurIPS2021)
    https://arxiv.org/abs/2106.07802
    %JNF/FU
    Klicpera et al (NeurIPS WS2022)
    https://arxiv.org/abs/2011.14115
    3BEJBM#BTJT 2D Spherical (Fourier-Bessel) Basis
    Bond angles
    Bond angles
    Torsion angles
    (Dihedral angles)
    generates distributions of low-energy
    molecular 3D conformers

    View Slide

  70. ML ⁇ QM: ML Potentials, Force fields, Density functionals
    Machine Learning at the Atomic Scale (Chem. Rev.)
    https://pubs.acs.org/toc/chreay/121/16
    Data Science Meets Chemistry (Acc. Chem. Res.)
    https://pubs.acs.org/page/achre4/data-science-meets-chemistry

    View Slide

  71. SchNOrb (Schütt et al, Nat Commn, 2019)

    View Slide

  72. DM21 Density functional (Kirkpatrick et al, Science, 2021)

    View Slide

  73. "Learn to simulate"

    View Slide

  74. Learn to simulate long-time evolution of a glassy sytem
    https://deepmind.com/blog/article/Towards-understanding-glasses-with-graph-neural-networks
    Bapst V, Keck T, Grabska-Barwińska A, Donner C, Cubuk ED, Schoenholz SS, et al.
    Unveiling the predictive power of static structure in glassy systems.
    Nature Physics. 2020;16: 448–454.

    View Slide

  75. Annu. Rev. Phys. Chem. 71:361–90 (2020)
    PNAS (2020)
    Acc. Chem. Res. 54(7):1575–1585 (2021)
    DL/GNNs ⁇ Simulations
    How to fuse ML (empiricism) and simulations (rationalism) is one of the recent hot topics.

    View Slide

  76. AtomicNum
    TotalDegree
    TotalNumHs
    FormalCharge
    deltaMass
    IsInRing
    Toward more effective inductive bias?
    Water molecule H2
    O
    0
    1 2
    0 1
    8
    2
    0
    0
    0
    0
    1
    1
    0
    0
    0
    0
    0
    0 1
    0
    0
    0
    0
    BondType
    Stereo
    1
    1
    0
    0
    0
    0
    A molecular graph (RDKit)
    Atom
    Invariants
    Bond
    Invariants
    1 2
    bond angle
    104.45°
    atom-atom
    distance
    95.84 pm
    O
    H H
    H
    O
    H
    1s2 2s2 2p4
    1s1 1s1
    8 + 1 + 1 = 10 electrons
    +8
    + +
    -
    -
    -
    -
    -
    -
    -
    -
    -
    -
    covalent bonds
    δ+
    δ+
    δ-
    δ-
    - -
    -
    -
    O
    H
    H
    sp3 hybridization molecular orbitals
    O
    H H
    sp3 sp3 sp3 sp3
    2px 2px 2px
    2s
    1s
    1s
    O H H
    LUMO
    HOMO

    View Slide

  77. Toward more effective inductive bias?
    https://doi.org/10.1038/ s42254-021-00314-5

    View Slide

  78. https://uclnlp.github.io/nampi/
    Neural Abstract Machines & Program Induction
    • Differentiable Neural Computers /
    Neural Turing Machines (Graves+ 2014)
    • Memory Networks (Weston+ 2014)
    • Pointer Networks (Vinyals+ 2015)
    • Neural Stacks (Grefenstette+ 2015, Joulin+ 2015)
    • Hierarchical Attentive Memory
    (Andrychowicz+ 2016)
    • Neural Program Interpreters (Reed+ 2016)
    • Neural Programmer (Neelakantan+ 2016)
    • DeepCoder (Balog+ 2016)
    :
    DL/GNNs ⁇ Symbolic Tasks, Logical Inference, Planning
    Now we can use machine learning also for symbolic, logical, algorithmic tasks!
    Can we also use explicit chemical knowledges?

    View Slide

  79. https://www.ipam.ucla.edu/dlc2021
    https://arxiv.org/abs/2102.09544
    DL/GNNs ⁇ Combinatorial Optimization and Reasoning
    https://doi.org/10.1016/j.patter.2021.100273
    https://youtu.be/QOBoZaDZYUI

    View Slide

  80. One final remark on "the true dark side" …

    View Slide

  81. Object recognition
    Game play
    ˑ֮׶ָהֲ˒
    J’aime la
    musique I love music
    Speech recognition
    Machine translation
    The huge gap between prediction and understanding
    Prediction does not directly bring us Understanding nor Discovery.
    Current ML already provides practical applications below, but how we recognize objects and
    speech sounds, and how we aquire and use languages is still not well understood…

    View Slide

  82. Weight (kg)
    Height
    (cm)
    Height and Weight of Pro baseball players
    (2016 NPB Website)
    To find out what happens to a system when you interfere with it,
    you have to interfere with it (not just passively observe it). George Box
    Observational vs experimental (interventional) studies
    We see correlation, but these data never tell us
    "increase weight" does not imply "grow in height"
    Applied Stats 101
    Correlation does not imply causation
    We need experiments! Passively observing
    data and applying ML to it is alway insufficient.
    An Inconvenient Truth
    All we can directly access is correlation

    View Slide

  83. Toward causal representation learning
    https://arxiv.org/abs/2102.11107

    View Slide

  84. ˖ %FTJHOQMBOBOE
    DPOEVDUFYQFSJNFOT
    ˖ &WBMVBUFPCTFSWBUJPOT
    ˖ 8PSLXJUIFYQFSUT
    From machine learning to machine discovery
    The hard problems are happening at the interface between inside and outside of ML.
    ML models
    inside
    outside
    Input information
    of the outside
    Get information back
    to the outside
    ˖ *EFOUJGZJOQVUWBSJBCMFT
    ˖ %FTJHO.-UBTLT
    ˖ 1SFQBSFHPPEUSBJOJOHEBUB
    ˖ 6TFFYJTUJOHEBUBLOPXMFEHF
    Representing Intervening

    View Slide

  85. The lesson: Science is a human activity, after all
    We need to seriously take all "human factors" into consideration. All difficulty is our
    fault. We want "understanding" and "discovery", but neither machines nor nature do.
    • Interpretability
    All information needs to be simple enough so that we feel like we understand it
    within our (poor) cognitive capability.
    • Partiality of information
    We cannot observe everything, nor model everything. Any data is some finite,
    partial, and inevitably biased snapshot.
    • Finitude of time
    Discovery needs to be done within the time limit of one's life (or the extinction
    of mankind)

    View Slide

  86. Summary
    1. What actually ML is?
    2. The dark side: Modern aspects of ML
    3. The light side: Deep learning for molecules
    A quick review on the dark side and light side of ML
    from both viewpoints as an ML algorithm researcher and an ML practitioner/user
    May the ML Force be with you…
    Science is built up of facts, as a house is built of stones;
    but an accumulation of facts is no more a science than
    a heap of stones is a house. Henri Poincaré "Science and hypothesis"
    This slide is available at
    https://itakigawa.github.io/news.html

    View Slide