Upgrade to PRO for Only $50/Year—Limited-Time Offer! 🔥
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
Leveraging Data Science to Advance the Scientif...
Search
Jeffrey M Girard
January 28, 2020
Science
1
73
Leveraging Data Science to Advance the Scientific Study of Smiling
Brownbag (Chalk) Talk Slides from Jeffrey M. Girard, PhD (Carnegie Mellon University)
Jeffrey M Girard
January 28, 2020
Tweet
Share
More Decks by Jeffrey M Girard
See All by Jeffrey M Girard
Large-scale observational research
jmgirard
2
76
Interdisciplinary Frontiers in Affective Health & Communication
jmgirard
1
47
Data Visualization Principles and Practice
jmgirard
1
330
Other Decks in Science
See All in Science
KH Coderチュートリアル(スライド版)
koichih
1
54k
Lean4による汎化誤差評価の形式化
milano0017
1
380
生成検索エンジン最適化に関する研究の紹介
ynakano
2
1.5k
【論文紹介】Is CLIP ideal? No. Can we fix it?Yes! 第65回 コンピュータビジョン勉強会@関東
shun6211
5
2.1k
知能とはなにかーヒトとAIのあいだー
tagtag
0
120
データベース03: 関係データモデル
trycycle
PRO
1
320
baseballrによるMLBデータの抽出と階層ベイズモデルによる打率の推定 / TokyoR118
dropout009
2
630
ランサムウェア対策にも考慮したVMware、Hyper-V、Azure、AWS間のリアルタイムレプリケーション「Zerto」を徹底解説
climbteam
0
180
Ignite の1年間の軌跡
ktombow
0
180
風の力で振れ幅が大きくなる振り子!? 〜タコマナローズ橋はなぜ落ちたのか〜
syotasasaki593876
1
160
academist Prize 4期生 研究トーク延長戦!「美は世界を救う」っていうけど、どうやって?
jimpe_hitsuwari
0
450
Vibecoding for Product Managers
ibknadedeji
0
120
Featured
See All Featured
What’s in a name? Adding method to the madness
productmarketing
PRO
24
3.8k
[SF Ruby Conf 2025] Rails X
palkan
0
500
Thoughts on Productivity
jonyablonski
73
5k
Visualization
eitanlees
150
16k
Practical Tips for Bootstrapping Information Extraction Pipelines
honnibal
25
1.6k
Rebuilding a faster, lazier Slack
samanthasiow
84
9.3k
[RailsConf 2023 Opening Keynote] The Magic of Rails
eileencodes
31
9.8k
Writing Fast Ruby
sferik
630
62k
"I'm Feeling Lucky" - Building Great Search Experiences for Today's Users (#IAC19)
danielanewman
231
22k
Save Time (by Creating Custom Rails Generators)
garrettdimon
PRO
32
1.8k
Six Lessons from altMBA
skipperchong
29
4.1k
Improving Core Web Vitals using Speculation Rules API
sergeychernyshev
21
1.3k
Transcript
Leveraging Data Science to Advance the Scientific Study of Smiling
bit.ly/girard2020b
Data Science in Psychology • • • • • •
• • • •
Data Science in Psychology Solutions (Hammers) • • • •
• • • • • • • • • Challenges (Nails) • • • • • • • • • • • • •
Presentation Roadmap
Study 1: Web-Scraped Celebrity Smiles
Web-Scraped Celebrity Smiles: Design • • • • • •
Web-Scraped Celebrity Smiles: Collect/Process http://bit.ly/celebs_by_nation
Web-Scraped Celebrity Smiles: Collect/Process
Web-Scraped Celebrity Smiles: Process
Web-Scraped Celebrity Smiles: Validate Measure Algorithm Positive Smile Positive Rating
0.79 Smile Rating 0.78 0.94 Expert FACS 0.87 0.97 0.94 Measure ICC(A,5) 95% CI Positive Rating 0.90 [0.88, 0.92] Smile Rating 0.90 [0.88, 0.92]
Web-Scraped Celebrity Smiles: Model • • • • • •
• • Zero-Inflated Beta Regression ZI Beta = 0 ∈ (0, 1)
Web-Scraped Celebrity Smiles: Model/Visualize
Web-Scraped Celebrity Smiles: Visualize
Study 2: Spontaneous Emotion Database
Spontaneous Emotion Database: Design • • • •
Spontaneous Emotion Database: Design • • • •
Spontaneous Emotion Database: Design/Collect Emotion Rating Scale Afraid/Scared 0 1
2 3 4 5 Angry/Upset 0 1 2 3 4 5 Disgusted 0 1 2 3 4 5 … … Other (write in) 0 1 2 3 4 5
Spontaneous Emotion Database: Collect/Visualize
Spontaneous Emotion Database: Validate/Visualize
Spontaneous Emotion Database: Collect AU 1 + 10 + 12
+ 15 + 17 + 64 Action Unit Occurrence Did the action unit happen? {Absent = 0, 1 = Present} Action Unit Intensity How strong was the action unit? {Trace = 1, 2, 3, 4, 5 = Maximum}
Spontaneous Emotion Database: Collect/Process AU12 AU12 AU06 2 2 3
4 4 4 2 4 2 2 2 2 2 2 3 3 3 3 3 0 0 1 1 0 0 0 1 1 1 1 1 1 0 0 1 1 1 1 1 1 1 1 1 1 1 Action Unit Occurrence: {0=Absent, 1=Present} Action Unit Intensity: {1=Trace, 2=Slight, 3=Pronounced, 4=Extreme, 5=Maximum}
Spontaneous Emotion Database: Collect
Spontaneous Emotion Database: Validate agreement github.com/jmgirard/agreement mreliability.jmgirard.com 0 1 1
1 0 0 1 1 0 1 0 1
Study 3: Algorithmic Smile Interpretation
Algorithmic Smile Interpretation: Design • • • •
Algorithmic Smile Interpretation: Process Example Smile Event Video Clips Fr
AU12 AU6 1 3 0 2 3 3 3 4 2 4 0 0 5 2 0 6 2 0 Frs AU12i AU6o AU6i 1 to 3 4 1 3 5 to 6 2 0 0
Algorithmic Smile Interpretation: Model Smile Appearance Reported Emotion Algorithm
Algorithmic Smile Interpretation: Model Support Vector Machine Random Forest Multilayer
Perceptron
Algorithmic Smile Interpretation: Validate
Algorithmic Smile Interpretation: Visualize
Discussion Questions • • •