Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
Leveraging Data Science to Advance the Scientif...
Search
Jeffrey M Girard
January 28, 2020
Science
1
73
Leveraging Data Science to Advance the Scientific Study of Smiling
Brownbag (Chalk) Talk Slides from Jeffrey M. Girard, PhD (Carnegie Mellon University)
Jeffrey M Girard
January 28, 2020
Tweet
Share
More Decks by Jeffrey M Girard
See All by Jeffrey M Girard
Large-scale observational research
jmgirard
2
76
Interdisciplinary Frontiers in Affective Health & Communication
jmgirard
1
48
Data Visualization Principles and Practice
jmgirard
1
330
Other Decks in Science
See All in Science
AI(人工知能)の過去・現在・未来 —AIは人間を超えるのか—
tagtag
PRO
1
220
PPIのみを用いたAIによる薬剤–遺伝子–疾患 相互作用の同定
tagtag
PRO
0
130
あなたに水耕栽培を愛していないとは言わせない
mutsumix
1
150
防災デジタル分野での官民共創の取り組み (1)防災DX官民共創をどう進めるか
ditccsugii
0
460
機械学習 - DBSCAN
trycycle
PRO
0
1.4k
(2025) Balade en cyclotomie
mansuy
0
350
知能とはなにかーヒトとAIのあいだー
tagtag
PRO
0
130
データマイニング - コミュニティ発見
trycycle
PRO
0
190
People who frequently use ChatGPT for writing tasks are accurate and robust detectors of AI-generated text
rudorudo11
0
170
SpatialRDDパッケージによる空間回帰不連続デザイン
saltcooky12
0
110
Rashomon at the Sound: Reconstructing all possible paleoearthquake histories in the Puget Lowland through topological search
cossatot
0
310
凸最適化からDC最適化まで
santana_hammer
1
350
Featured
See All Featured
Between Models and Reality
mayunak
1
150
Noah Learner - AI + Me: how we built a GSC Bulk Export data pipeline
techseoconnect
PRO
0
76
Primal Persuasion: How to Engage the Brain for Learning That Lasts
tmiket
0
200
Introduction to Domain-Driven Design and Collaborative software design
baasie
1
530
Connecting the Dots Between Site Speed, User Experience & Your Business [WebExpo 2025]
tammyeverts
10
770
Future Trends and Review - Lecture 12 - Web Technologies (1019888BNR)
signer
PRO
0
3.1k
Test your architecture with Archunit
thirion
1
2.1k
Applied NLP in the Age of Generative AI
inesmontani
PRO
3
2k
[Rails World 2023 - Day 1 Closing Keynote] - The Magic of Rails
eileencodes
38
2.7k
Game over? The fight for quality and originality in the time of robots
wayneb77
1
73
How to Create Impact in a Changing Tech Landscape [PerfNow 2023]
tammyeverts
55
3.2k
How to Build an AI Search Optimization Roadmap - Criteria and Steps to Take #SEOIRL
aleyda
1
1.8k
Transcript
Leveraging Data Science to Advance the Scientific Study of Smiling
bit.ly/girard2020b
Data Science in Psychology • • • • • •
• • • •
Data Science in Psychology Solutions (Hammers) • • • •
• • • • • • • • • Challenges (Nails) • • • • • • • • • • • • •
Presentation Roadmap
Study 1: Web-Scraped Celebrity Smiles
Web-Scraped Celebrity Smiles: Design • • • • • •
Web-Scraped Celebrity Smiles: Collect/Process http://bit.ly/celebs_by_nation
Web-Scraped Celebrity Smiles: Collect/Process
Web-Scraped Celebrity Smiles: Process
Web-Scraped Celebrity Smiles: Validate Measure Algorithm Positive Smile Positive Rating
0.79 Smile Rating 0.78 0.94 Expert FACS 0.87 0.97 0.94 Measure ICC(A,5) 95% CI Positive Rating 0.90 [0.88, 0.92] Smile Rating 0.90 [0.88, 0.92]
Web-Scraped Celebrity Smiles: Model • • • • • •
• • Zero-Inflated Beta Regression ZI Beta = 0 ∈ (0, 1)
Web-Scraped Celebrity Smiles: Model/Visualize
Web-Scraped Celebrity Smiles: Visualize
Study 2: Spontaneous Emotion Database
Spontaneous Emotion Database: Design • • • •
Spontaneous Emotion Database: Design • • • •
Spontaneous Emotion Database: Design/Collect Emotion Rating Scale Afraid/Scared 0 1
2 3 4 5 Angry/Upset 0 1 2 3 4 5 Disgusted 0 1 2 3 4 5 … … Other (write in) 0 1 2 3 4 5
Spontaneous Emotion Database: Collect/Visualize
Spontaneous Emotion Database: Validate/Visualize
Spontaneous Emotion Database: Collect AU 1 + 10 + 12
+ 15 + 17 + 64 Action Unit Occurrence Did the action unit happen? {Absent = 0, 1 = Present} Action Unit Intensity How strong was the action unit? {Trace = 1, 2, 3, 4, 5 = Maximum}
Spontaneous Emotion Database: Collect/Process AU12 AU12 AU06 2 2 3
4 4 4 2 4 2 2 2 2 2 2 3 3 3 3 3 0 0 1 1 0 0 0 1 1 1 1 1 1 0 0 1 1 1 1 1 1 1 1 1 1 1 Action Unit Occurrence: {0=Absent, 1=Present} Action Unit Intensity: {1=Trace, 2=Slight, 3=Pronounced, 4=Extreme, 5=Maximum}
Spontaneous Emotion Database: Collect
Spontaneous Emotion Database: Validate agreement github.com/jmgirard/agreement mreliability.jmgirard.com 0 1 1
1 0 0 1 1 0 1 0 1
Study 3: Algorithmic Smile Interpretation
Algorithmic Smile Interpretation: Design • • • •
Algorithmic Smile Interpretation: Process Example Smile Event Video Clips Fr
AU12 AU6 1 3 0 2 3 3 3 4 2 4 0 0 5 2 0 6 2 0 Frs AU12i AU6o AU6i 1 to 3 4 1 3 5 to 6 2 0 0
Algorithmic Smile Interpretation: Model Smile Appearance Reported Emotion Algorithm
Algorithmic Smile Interpretation: Model Support Vector Machine Random Forest Multilayer
Perceptron
Algorithmic Smile Interpretation: Validate
Algorithmic Smile Interpretation: Visualize
Discussion Questions • • •