Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
Leveraging Data Science to Advance the Scientif...
Search
Jeffrey M Girard
January 28, 2020
Science
1
69
Leveraging Data Science to Advance the Scientific Study of Smiling
Brownbag (Chalk) Talk Slides from Jeffrey M. Girard, PhD (Carnegie Mellon University)
Jeffrey M Girard
January 28, 2020
Tweet
Share
More Decks by Jeffrey M Girard
See All by Jeffrey M Girard
Large-scale observational research
jmgirard
2
73
Interdisciplinary Frontiers in Affective Health & Communication
jmgirard
1
45
Data Visualization Principles and Practice
jmgirard
1
310
Other Decks in Science
See All in Science
2025-06-11-ai_belgium
sofievl
1
170
機械学習 - DBSCAN
trycycle
PRO
0
1.1k
KH Coderチュートリアル(スライド版)
koichih
1
48k
機械学習 - 決定木からはじめる機械学習
trycycle
PRO
0
1.1k
データベース14: B+木 & ハッシュ索引
trycycle
PRO
0
490
NASの容量不足のお悩み解決!災害対策も兼ねた「Wasabi Cloud NAS」はここがスゴイ
climbteam
1
160
サイゼミ用因果推論
lw
1
7.5k
データベース11: 正規化(1/2) - 望ましくない関係スキーマ
trycycle
PRO
0
950
SciPyDataJapan 2025
schwalbe10
0
270
Transport information Geometry: Current and Future II
lwc2017
0
210
Machine Learning for Materials (Challenge)
aronwalsh
0
340
機械学習 - 授業概要
trycycle
PRO
0
250
Featured
See All Featured
Improving Core Web Vitals using Speculation Rules API
sergeychernyshev
19
1.2k
Practical Orchestrator
shlominoach
190
11k
4 Signs Your Business is Dying
shpigford
185
22k
Templates, Plugins, & Blocks: Oh My! Creating the theme that thinks of everything
marktimemedia
31
2.5k
We Have a Design System, Now What?
morganepeng
53
7.8k
Context Engineering - Making Every Token Count
addyosmani
5
230
Cheating the UX When There Is Nothing More to Optimize - PixelPioneers
stephaniewalter
285
14k
Rebuilding a faster, lazier Slack
samanthasiow
84
9.2k
The Straight Up "How To Draw Better" Workshop
denniskardys
238
140k
Bash Introduction
62gerente
615
210k
Embracing the Ebb and Flow
colly
88
4.8k
How To Stay Up To Date on Web Technology
chriscoyier
791
250k
Transcript
Leveraging Data Science to Advance the Scientific Study of Smiling
bit.ly/girard2020b
Data Science in Psychology • • • • • •
• • • •
Data Science in Psychology Solutions (Hammers) • • • •
• • • • • • • • • Challenges (Nails) • • • • • • • • • • • • •
Presentation Roadmap
Study 1: Web-Scraped Celebrity Smiles
Web-Scraped Celebrity Smiles: Design • • • • • •
Web-Scraped Celebrity Smiles: Collect/Process http://bit.ly/celebs_by_nation
Web-Scraped Celebrity Smiles: Collect/Process
Web-Scraped Celebrity Smiles: Process
Web-Scraped Celebrity Smiles: Validate Measure Algorithm Positive Smile Positive Rating
0.79 Smile Rating 0.78 0.94 Expert FACS 0.87 0.97 0.94 Measure ICC(A,5) 95% CI Positive Rating 0.90 [0.88, 0.92] Smile Rating 0.90 [0.88, 0.92]
Web-Scraped Celebrity Smiles: Model • • • • • •
• • Zero-Inflated Beta Regression ZI Beta = 0 ∈ (0, 1)
Web-Scraped Celebrity Smiles: Model/Visualize
Web-Scraped Celebrity Smiles: Visualize
Study 2: Spontaneous Emotion Database
Spontaneous Emotion Database: Design • • • •
Spontaneous Emotion Database: Design • • • •
Spontaneous Emotion Database: Design/Collect Emotion Rating Scale Afraid/Scared 0 1
2 3 4 5 Angry/Upset 0 1 2 3 4 5 Disgusted 0 1 2 3 4 5 … … Other (write in) 0 1 2 3 4 5
Spontaneous Emotion Database: Collect/Visualize
Spontaneous Emotion Database: Validate/Visualize
Spontaneous Emotion Database: Collect AU 1 + 10 + 12
+ 15 + 17 + 64 Action Unit Occurrence Did the action unit happen? {Absent = 0, 1 = Present} Action Unit Intensity How strong was the action unit? {Trace = 1, 2, 3, 4, 5 = Maximum}
Spontaneous Emotion Database: Collect/Process AU12 AU12 AU06 2 2 3
4 4 4 2 4 2 2 2 2 2 2 3 3 3 3 3 0 0 1 1 0 0 0 1 1 1 1 1 1 0 0 1 1 1 1 1 1 1 1 1 1 1 Action Unit Occurrence: {0=Absent, 1=Present} Action Unit Intensity: {1=Trace, 2=Slight, 3=Pronounced, 4=Extreme, 5=Maximum}
Spontaneous Emotion Database: Collect
Spontaneous Emotion Database: Validate agreement github.com/jmgirard/agreement mreliability.jmgirard.com 0 1 1
1 0 0 1 1 0 1 0 1
Study 3: Algorithmic Smile Interpretation
Algorithmic Smile Interpretation: Design • • • •
Algorithmic Smile Interpretation: Process Example Smile Event Video Clips Fr
AU12 AU6 1 3 0 2 3 3 3 4 2 4 0 0 5 2 0 6 2 0 Frs AU12i AU6o AU6i 1 to 3 4 1 3 5 to 6 2 0 0
Algorithmic Smile Interpretation: Model Smile Appearance Reported Emotion Algorithm
Algorithmic Smile Interpretation: Model Support Vector Machine Random Forest Multilayer
Perceptron
Algorithmic Smile Interpretation: Validate
Algorithmic Smile Interpretation: Visualize
Discussion Questions • • •