Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
Leveraging Data Science to Advance the Scientif...
Search
Jeffrey M Girard
January 28, 2020
Science
1
67
Leveraging Data Science to Advance the Scientific Study of Smiling
Brownbag (Chalk) Talk Slides from Jeffrey M. Girard, PhD (Carnegie Mellon University)
Jeffrey M Girard
January 28, 2020
Tweet
Share
More Decks by Jeffrey M Girard
See All by Jeffrey M Girard
Large-scale observational research
jmgirard
2
73
Interdisciplinary Frontiers in Affective Health & Communication
jmgirard
1
45
Data Visualization Principles and Practice
jmgirard
1
310
Other Decks in Science
See All in Science
データベース11: 正規化(1/2) - 望ましくない関係スキーマ
trycycle
PRO
0
940
Ignite の1年間の軌跡
ktombow
0
150
統計的因果探索: 背景知識とデータにより因果仮説を探索する
sshimizu2006
4
1k
07_浮世満理子_アイディア高等学院学院長_一般社団法人全国心理業連合会代表理事_紹介資料.pdf
sip3ristex
0
600
05_山中真也_室蘭工業大学大学院工学研究科教授_だてプロの挑戦.pdf
sip3ristex
0
630
AI(人工知能)の過去・現在・未来 —AIは人間を超えるのか—
tagtag
1
120
Celebrate UTIG: Staff and Student Awards 2025
utig
0
150
データベース01: データベースを使わない世界
trycycle
PRO
1
770
Machine Learning for Materials (Challenge)
aronwalsh
0
320
データマイニング - ウェブとグラフ
trycycle
PRO
0
170
Explanatory material
yuki1986
0
400
アナログ計算機『計算尺』を愛でる Midosuji Tech #4/Analog Computing Device Slide Rule now and then
quiver
1
260
Featured
See All Featured
Building Flexible Design Systems
yeseniaperezcruz
328
39k
Exploring the Power of Turbo Streams & Action Cable | RailsConf2023
kevinliebholz
34
6k
Templates, Plugins, & Blocks: Oh My! Creating the theme that thinks of everything
marktimemedia
31
2.5k
RailsConf & Balkan Ruby 2019: The Past, Present, and Future of Rails at GitHub
eileencodes
139
34k
ピンチをチャンスに:未来をつくるプロダクトロードマップ #pmconf2020
aki_iinuma
126
53k
Agile that works and the tools we love
rasmusluckow
330
21k
Designing for humans not robots
tammielis
253
25k
Making Projects Easy
brettharned
117
6.4k
10 Git Anti Patterns You Should be Aware of
lemiorhan
PRO
656
61k
A Modern Web Designer's Workflow
chriscoyier
696
190k
Understanding Cognitive Biases in Performance Measurement
bluesmoon
29
1.9k
Raft: Consensus for Rubyists
vanstee
140
7.1k
Transcript
Leveraging Data Science to Advance the Scientific Study of Smiling
bit.ly/girard2020b
Data Science in Psychology • • • • • •
• • • •
Data Science in Psychology Solutions (Hammers) • • • •
• • • • • • • • • Challenges (Nails) • • • • • • • • • • • • •
Presentation Roadmap
Study 1: Web-Scraped Celebrity Smiles
Web-Scraped Celebrity Smiles: Design • • • • • •
Web-Scraped Celebrity Smiles: Collect/Process http://bit.ly/celebs_by_nation
Web-Scraped Celebrity Smiles: Collect/Process
Web-Scraped Celebrity Smiles: Process
Web-Scraped Celebrity Smiles: Validate Measure Algorithm Positive Smile Positive Rating
0.79 Smile Rating 0.78 0.94 Expert FACS 0.87 0.97 0.94 Measure ICC(A,5) 95% CI Positive Rating 0.90 [0.88, 0.92] Smile Rating 0.90 [0.88, 0.92]
Web-Scraped Celebrity Smiles: Model • • • • • •
• • Zero-Inflated Beta Regression ZI Beta = 0 ∈ (0, 1)
Web-Scraped Celebrity Smiles: Model/Visualize
Web-Scraped Celebrity Smiles: Visualize
Study 2: Spontaneous Emotion Database
Spontaneous Emotion Database: Design • • • •
Spontaneous Emotion Database: Design • • • •
Spontaneous Emotion Database: Design/Collect Emotion Rating Scale Afraid/Scared 0 1
2 3 4 5 Angry/Upset 0 1 2 3 4 5 Disgusted 0 1 2 3 4 5 … … Other (write in) 0 1 2 3 4 5
Spontaneous Emotion Database: Collect/Visualize
Spontaneous Emotion Database: Validate/Visualize
Spontaneous Emotion Database: Collect AU 1 + 10 + 12
+ 15 + 17 + 64 Action Unit Occurrence Did the action unit happen? {Absent = 0, 1 = Present} Action Unit Intensity How strong was the action unit? {Trace = 1, 2, 3, 4, 5 = Maximum}
Spontaneous Emotion Database: Collect/Process AU12 AU12 AU06 2 2 3
4 4 4 2 4 2 2 2 2 2 2 3 3 3 3 3 0 0 1 1 0 0 0 1 1 1 1 1 1 0 0 1 1 1 1 1 1 1 1 1 1 1 Action Unit Occurrence: {0=Absent, 1=Present} Action Unit Intensity: {1=Trace, 2=Slight, 3=Pronounced, 4=Extreme, 5=Maximum}
Spontaneous Emotion Database: Collect
Spontaneous Emotion Database: Validate agreement github.com/jmgirard/agreement mreliability.jmgirard.com 0 1 1
1 0 0 1 1 0 1 0 1
Study 3: Algorithmic Smile Interpretation
Algorithmic Smile Interpretation: Design • • • •
Algorithmic Smile Interpretation: Process Example Smile Event Video Clips Fr
AU12 AU6 1 3 0 2 3 3 3 4 2 4 0 0 5 2 0 6 2 0 Frs AU12i AU6o AU6i 1 to 3 4 1 3 5 to 6 2 0 0
Algorithmic Smile Interpretation: Model Smile Appearance Reported Emotion Algorithm
Algorithmic Smile Interpretation: Model Support Vector Machine Random Forest Multilayer
Perceptron
Algorithmic Smile Interpretation: Validate
Algorithmic Smile Interpretation: Visualize
Discussion Questions • • •