Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
Leveraging Data Science to Advance the Scientif...
Search
Jeffrey M Girard
January 28, 2020
Science
1
69
Leveraging Data Science to Advance the Scientific Study of Smiling
Brownbag (Chalk) Talk Slides from Jeffrey M. Girard, PhD (Carnegie Mellon University)
Jeffrey M Girard
January 28, 2020
Tweet
Share
More Decks by Jeffrey M Girard
See All by Jeffrey M Girard
Large-scale observational research
jmgirard
2
74
Interdisciplinary Frontiers in Affective Health & Communication
jmgirard
1
45
Data Visualization Principles and Practice
jmgirard
1
320
Other Decks in Science
See All in Science
Hakonwa-Quaternion
hiranabe
1
140
防災デジタル分野での官民共創の取り組み (1)防災DX官民共創をどう進めるか
ditccsugii
0
350
Ignite の1年間の軌跡
ktombow
0
170
baseballrによるMLBデータの抽出と階層ベイズモデルによる打率の推定 / TokyoR118
dropout009
2
610
AIによる科学の加速: 各領域での革新と共創の未来
masayamoriofficial
0
220
KH Coderチュートリアル(スライド版)
koichih
1
50k
Vibecoding for Product Managers
ibknadedeji
0
100
生成AIと学ぶPythonデータ分析再入門-Pythonによるクラスタリング・可視化をサクサク実施-
datascientistsociety
PRO
4
1.8k
【RSJ2025】PAMIQ Core: リアルタイム継続学習のための⾮同期推論・学習フレームワーク
gesonanko
0
220
知能とはなにかーヒトとAIのあいだー
tagtag
0
150
機械学習 - DBSCAN
trycycle
PRO
0
1.2k
データベース03: 関係データモデル
trycycle
PRO
1
280
Featured
See All Featured
Building Better People: How to give real-time feedback that sticks.
wjessup
370
20k
Put a Button on it: Removing Barriers to Going Fast.
kastner
60
4.1k
[RailsConf 2023] Rails as a piece of cake
palkan
57
6k
Testing 201, or: Great Expectations
jmmastey
46
7.7k
RailsConf 2023
tenderlove
30
1.3k
The Language of Interfaces
destraynor
162
25k
ピンチをチャンスに:未来をつくるプロダクトロードマップ #pmconf2020
aki_iinuma
127
54k
Balancing Empowerment & Direction
lara
5
710
4 Signs Your Business is Dying
shpigford
186
22k
Rebuilding a faster, lazier Slack
samanthasiow
84
9.2k
Faster Mobile Websites
deanohume
310
31k
Fight the Zombie Pattern Library - RWD Summit 2016
marcelosomers
234
17k
Transcript
Leveraging Data Science to Advance the Scientific Study of Smiling
bit.ly/girard2020b
Data Science in Psychology • • • • • •
• • • •
Data Science in Psychology Solutions (Hammers) • • • •
• • • • • • • • • Challenges (Nails) • • • • • • • • • • • • •
Presentation Roadmap
Study 1: Web-Scraped Celebrity Smiles
Web-Scraped Celebrity Smiles: Design • • • • • •
Web-Scraped Celebrity Smiles: Collect/Process http://bit.ly/celebs_by_nation
Web-Scraped Celebrity Smiles: Collect/Process
Web-Scraped Celebrity Smiles: Process
Web-Scraped Celebrity Smiles: Validate Measure Algorithm Positive Smile Positive Rating
0.79 Smile Rating 0.78 0.94 Expert FACS 0.87 0.97 0.94 Measure ICC(A,5) 95% CI Positive Rating 0.90 [0.88, 0.92] Smile Rating 0.90 [0.88, 0.92]
Web-Scraped Celebrity Smiles: Model • • • • • •
• • Zero-Inflated Beta Regression ZI Beta = 0 ∈ (0, 1)
Web-Scraped Celebrity Smiles: Model/Visualize
Web-Scraped Celebrity Smiles: Visualize
Study 2: Spontaneous Emotion Database
Spontaneous Emotion Database: Design • • • •
Spontaneous Emotion Database: Design • • • •
Spontaneous Emotion Database: Design/Collect Emotion Rating Scale Afraid/Scared 0 1
2 3 4 5 Angry/Upset 0 1 2 3 4 5 Disgusted 0 1 2 3 4 5 … … Other (write in) 0 1 2 3 4 5
Spontaneous Emotion Database: Collect/Visualize
Spontaneous Emotion Database: Validate/Visualize
Spontaneous Emotion Database: Collect AU 1 + 10 + 12
+ 15 + 17 + 64 Action Unit Occurrence Did the action unit happen? {Absent = 0, 1 = Present} Action Unit Intensity How strong was the action unit? {Trace = 1, 2, 3, 4, 5 = Maximum}
Spontaneous Emotion Database: Collect/Process AU12 AU12 AU06 2 2 3
4 4 4 2 4 2 2 2 2 2 2 3 3 3 3 3 0 0 1 1 0 0 0 1 1 1 1 1 1 0 0 1 1 1 1 1 1 1 1 1 1 1 Action Unit Occurrence: {0=Absent, 1=Present} Action Unit Intensity: {1=Trace, 2=Slight, 3=Pronounced, 4=Extreme, 5=Maximum}
Spontaneous Emotion Database: Collect
Spontaneous Emotion Database: Validate agreement github.com/jmgirard/agreement mreliability.jmgirard.com 0 1 1
1 0 0 1 1 0 1 0 1
Study 3: Algorithmic Smile Interpretation
Algorithmic Smile Interpretation: Design • • • •
Algorithmic Smile Interpretation: Process Example Smile Event Video Clips Fr
AU12 AU6 1 3 0 2 3 3 3 4 2 4 0 0 5 2 0 6 2 0 Frs AU12i AU6o AU6i 1 to 3 4 1 3 5 to 6 2 0 0
Algorithmic Smile Interpretation: Model Smile Appearance Reported Emotion Algorithm
Algorithmic Smile Interpretation: Model Support Vector Machine Random Forest Multilayer
Perceptron
Algorithmic Smile Interpretation: Validate
Algorithmic Smile Interpretation: Visualize
Discussion Questions • • •