Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
機械翻訳における文型パタンの部分的利用
Search
自然言語処理研究室
March 31, 2006
Research
0
75
機械翻訳における文型パタンの部分的利用
松田 聡史. 機械翻訳における文型パタンの部分的利用. 長岡技術科学大学課題研究報告書 (2006.3)
自然言語処理研究室
March 31, 2006
Tweet
Share
More Decks by 自然言語処理研究室
See All by 自然言語処理研究室
データサイエンス14_システム.pdf
jnlp
0
380
データサイエンス13_解析.pdf
jnlp
0
480
データサイエンス12_分類.pdf
jnlp
0
340
データサイエンス11_前処理.pdf
jnlp
0
460
Recurrent neural network based language model
jnlp
0
140
自然言語処理研究室 研究概要(2012年)
jnlp
0
130
自然言語処理研究室 研究概要(2013年)
jnlp
0
97
自然言語処理研究室 研究概要(2014年)
jnlp
0
120
自然言語処理研究室 研究概要(2015年)
jnlp
0
190
Other Decks in Research
See All in Research
最適決定木を用いた処方的価格最適化
mickey_kubo
4
1.9k
EOGS: Gaussian Splatting for Efficient Satellite Image Photogrammetry
satai
4
500
EcoWikiRS: Learning Ecological Representation of Satellite Images from Weak Supervision with Species Observation and Wikipedia
satai
3
120
Creation and environmental applications of 15-year daily inundation and vegetation maps for Siberia by integrating satellite and meteorological datasets
satai
3
260
20250605_新交通システム推進議連_熊本都市圏「車1割削減、渋滞半減、公共交通2倍」から考える地方都市交通政策
trafficbrain
0
750
利用シーンを意識した推薦システム〜SpotifyとAmazonの事例から〜
kuri8ive
1
250
Large Language Model Agent: A Survey on Methodology, Applications and Challenges
shunk031
16
9.9k
スキマバイトサービスにおける現場起点でのデザインアプローチ
yoshioshingyouji
0
210
問いを起点に、社会と共鳴する知を育む場へ
matsumoto_r
PRO
0
610
Hiding What from Whom? A Critical Review of the History of Programming languages for Music
tomoyanonymous
0
160
SegEarth-OV: Towards Training-Free Open-Vocabulary Segmentation for Remote Sensing Images
satai
3
170
[輪講] SigLIP 2: Multilingual Vision-Language Encoders with Improved Semantic Understanding, Localization, and Dense Features
nk35jk
2
980
Featured
See All Featured
Mobile First: as difficult as doing things right
swwweet
224
9.9k
Principles of Awesome APIs and How to Build Them.
keavy
126
17k
Designing for humans not robots
tammielis
253
25k
Fireside Chat
paigeccino
39
3.6k
[Rails World 2023 - Day 1 Closing Keynote] - The Magic of Rails
eileencodes
36
2.5k
Building Better People: How to give real-time feedback that sticks.
wjessup
368
19k
Why Our Code Smells
bkeepers
PRO
339
57k
StorybookのUI Testing Handbookを読んだ
zakiyama
31
6.1k
Code Review Best Practice
trishagee
70
19k
[RailsConf 2023 Opening Keynote] The Magic of Rails
eileencodes
30
9.6k
Rebuilding a faster, lazier Slack
samanthasiow
83
9.2k
Done Done
chrislema
185
16k
Transcript
ػց༁ʹ͓͚Δจܕɹɹ ɹ ɹ ɹɹɹύλϯͷ෦తར༻ Ԭٕज़Պֶେֶɹిؾܥ ࢁຊݚڀࣨ ใࠂऀ দాɹ૱࢙ ࢦಋڭһ ࢁຊɹӳ
ॿڭत ฏ18 2݄ 24
1.ݚڀഎܠ ύλϯ༁ͷ֓ཁ ɹ◆จ๏ɺ׳༻දݱΛݩʹύλϯΛ४උ ɹN1͕N2Λԉॿ͢Δ ɹN1 help N2 ɹ◆༁Λߦ͏จʹରͯ͠ύλϯΛͯ Ίɺ༁จͷग़ྗΛߦ͏ɻ
1.ݚڀഎܠ ର༁ύλϯ ɹN1͕N2Λԉॿ͢Δ ɹN1 help N2 ೖྗจ ɹI help you
ग़ྗจ ɹΘ͕ͨ͋͠ͳͨΛԉॿ͢Δ
1.ݚڀഎܠ ◆ ύλϯ༁ ɹ-ॏจɾෳจۤख ◆ ۙͷύλϯ༁ ɹ- ॏจɾෳจΛతͱͨ͠ύλϯ࡞ ɹ- ύλϯͷ૿Ճ
ɹ- ύλϯ༻ޮͷԼ →ύλϯΛ෦తʹར༻͢Δ͜ͱग़དྷͳ͍͔
2.త ෦తར༻Մೳͳύλϯͷ࡞ ɹ◆ύλϯར༻ޮͷ্ ɹ◆༁ݴޠͷॊೈͳରԠ ɹ◆༁ઌݴޠͰͷදݱͷ෯ͷ૿Ճ
3.CRESTύλϯ CRESTύλϯʹ͍ͭͯ ◆ॏจෳจͷ༁Λతͱͯ͠࡞ ◆୯ޠϨϕϧͰ12ສύλϯ ◆ઢܗ෦ͱඇઢܗ෦͔ΒͳΔ
3.CRESTύλϯ ◆ ઢܗ෦ ɹ- ଞͷཁૉʹஔ͖͑ͯશମͷҙຯ͕ มԽ͠ͳ͍ ◆ ඇઢܗ෦ ɹ- ஔ͖͑Δͱશମͷҙຯ͕มԽ͢Δ
ɹN1͕N2Λԉॿ͢Δ ɹN1 help N2
4.ؔ࿈ݚڀ ◆ਆΒ[2005]ɹίʔύεΛݩʹ୯ޠఔ ͷ໊ࢺ۟༁Λతͱͨ͠ύλϯ࡞ ◆നҪΒ[2003]ɹίʔύεΛݩʹจͷ ༁Λతͱͨ͠ύλϯΛ࡞ طଘͷύλϯ͔ΒύλϯΛ࡞͢Δͱ͍͏ ݚڀଘࡏ͠ͳ͍
5.ఏҊख๏ ύλϯΛͯΊΔࡍʹରԠ෦Λ୳͢ͷ Ͱඇޮ ɹ→͋Β͔͡ΊύλϯͷׂΛߦ͏ ɹ→ରԠ෦Λࣗಈతʹ୳͢ख๏͕ඞཁ N1͕N2ʹͳ͔ͬͯΒN3ΛV4^meireiɻ V4 N3 after N1
turn N2. N1͕N2ʹͳ͔ͬͯΒ after N1 turn N2.
5.ఏҊख๏ ◆ύλϯ͔Βඇઢܗ෦Λநग़ N1͕N2ʹͳ͔ͬͯΒN3ΛV4^meireiɻ V4 N3 after N1 turn N2.
5.ఏҊख๏ ύλϯઌ಄·ͨඌ-֤ඇઢܗ෦ Λύλϯީิͱͯ͠நग़ N1͕N2ʹͳ͔ͬͯΒ ʹͳ͔ͬͯΒN3ΛV4^meireiɻ V4 N3 after ɹafter N1
turn N2. V4 N3 after N1 turn ɹturn N2.
5.ఏҊख๏ ؚ·ΕΔઢܗ෦͕ಉ͡ύλϯಉ࢜Λ෦ ύλϯͱͯ͠ొ N1͕N2ʹͳ͔ͬͯΒ after N1 turn N2. ʹͳ͔ͬͯΒN3ΛV4^meireiɻ V4
N3 after
5.ఏҊख๏ લஔࢺɺ໊ؔࢺΛݩʹׂͨ͠ύλϯ ࡞ લஔࢺɹɹɹN1N2ʹV3^rentaiͷؒ ɹɹɹɹɹɹuntil N1 V3.past N2 ໊ؔࢺɹN1N2Ͱग़͔͚͍ͯΔؒ ɹɹɹɹɹɹwhile
N1 be on N2
6.ධՁ࣮ݧ 1. ɹ࡞ͨ͠ύλϯʹΑΔϚον 2. ɹ࡞ͨ͠ύλϯͷҙຯతͳରԠ
6.ධՁ࣮ݧ1 CRESTύλϯͷݪจ͔Β ɹ◆ϥϯμϜʹ100จ ɹ◆໊ؔࢺͰ࢝·Δ100จ ɹ◆લஔࢺͰ࢝·Δ100จ Λநग़ 4छྨͷύλϯΛͯΊΔ
6.ධՁ࣮ݧ1(݁Ռ)
࣮ݧจ*% Ϛον ໊ؔࢺ ඇม෦ $3&45ύλϯ લஔࢺ
6.ධՁ࣮ݧ1(݁Ռ) ֤จʹର͢ΔฏۉϚον CRESTύλϯ ඇઢܗ෦ લஔࢺ ໊ؔࢺ 16.6 100.7 0.6 196.7
6.ධՁ࣮ݧ2 ࡞ͨ͠ӳޠύλϯͱຊޠύλϯͰ ҙຯతͳରԠ͕ͱΕ͍ͯΔ͔ ˓ɿҙຯతͳରԠ͕ͱΕ͍ͯΔ ˚ɿӳɺӳ͍ͣΕ͔ʹؔͯ͠ɺҙຯͷ औΕͳ͍ඇઢܗ෦͕ଘࡏ͢Δ ×ɿҙຯతͳରԠ͕ͱΕ͍ͯͳ͍
6.ධՁ࣮ݧ2(݁Ռ) ύλϯͷҙຯతରԠ ˓ ˚ × ඇઢܗ෦ 43 47 10 લஔࢺ
30 43 27 ໊ؔࢺ 35 58 7
6.ධՁ࣮ݧ2(݁Ռ) ˓ɹN1 have a number of N2, ɹɹN1N2͕ࢁ͍ΔͷͰ ˚ɹIt is
said among N2 in N1 that ɹɹN1ͷN2ͷؒͰ ×ɹto V4 N3 ɹɹʹઌۦ͚ͯN3ΛV4.kako
7.ߟ ◆Ϛονͷ૿Ճ ɹ→༁ઌݴޠʹ͓͚Δදݱͷ͕Γ͔͍ ◆Ϛονͨ͠ύλϯʹ͍ͭͯ ɹ→༁ͷਖ਼ղͱͳΔύλϯଘࡏ͢Δ ɹ→จͷ༁ʹ༻Մೳ ◆શͳҙຯରԠͷऔΕͳ͍ύλϯ ɹ→ഉআ͢Δख๏ͷݕ౼͕ඞཁ
8.·ͱΊ CRESTύλϯΛݩʹ෦తύλϯΛ࡞ ඇઢܗ෦(લஔࢺɺ໊ؔࢺ)Λݩʹύ λϯΛׂɾ࠶ߏ ಛఆͷจܕʹ͍ͭͯύλϯϚον͕େ ෯ʹ૿Ճ ҙຯͷऔΕͳ͍ύλϯͷଘࡏ(ࠓޙͷ՝)