Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
機械翻訳における文型パタンの部分的利用
Search
自然言語処理研究室
March 31, 2006
Research
0
74
機械翻訳における文型パタンの部分的利用
松田 聡史. 機械翻訳における文型パタンの部分的利用. 長岡技術科学大学課題研究報告書 (2006.3)
自然言語処理研究室
March 31, 2006
Tweet
Share
More Decks by 自然言語処理研究室
See All by 自然言語処理研究室
データサイエンス14_システム.pdf
jnlp
0
380
データサイエンス13_解析.pdf
jnlp
0
470
データサイエンス12_分類.pdf
jnlp
0
330
データサイエンス11_前処理.pdf
jnlp
0
450
Recurrent neural network based language model
jnlp
0
130
自然言語処理研究室 研究概要(2012年)
jnlp
0
130
自然言語処理研究室 研究概要(2013年)
jnlp
0
93
自然言語処理研究室 研究概要(2014年)
jnlp
0
110
自然言語処理研究室 研究概要(2015年)
jnlp
0
180
Other Decks in Research
See All in Research
CSP: Self-Supervised Contrastive Spatial Pre-Training for Geospatial-Visual Representations
satai
3
210
Generative Models 2025
takahashihiroshi
21
12k
Trust No Bot? Forging Confidence in AI for Software Engineering
tomzimmermann
1
240
Mechanistic Interpretability:解釈可能性研究の新たな潮流
koshiro_aoki
1
300
Ad-DS Paper Circle #1
ykaneko1992
0
5.5k
2025年度 生成AIの使い方/接し方
hkefka385
1
700
SSII2025 [SS2] 横浜DeNAベイスターズの躍進を支えたAIプロダクト
ssii
PRO
7
3.5k
ストレス計測方法の確立に向けたマルチモーダルデータの活用
yurikomium
0
650
Computational OT #4 - Gradient flow and diffusion models
gpeyre
0
300
Combinatorial Search with Generators
kei18
0
320
定性データ、どう活かす? 〜定性データのための分析基盤、はじめました〜 / How to utilize qualitative data? ~We have launched an analysis platform for qualitative data~
kaminashi
6
1k
SSII2025 [TS3] 医工連携における画像情報学研究
ssii
PRO
2
1.2k
Featured
See All Featured
How STYLIGHT went responsive
nonsquared
100
5.6k
Become a Pro
speakerdeck
PRO
28
5.4k
The Web Performance Landscape in 2024 [PerfNow 2024]
tammyeverts
8
680
Git: the NoSQL Database
bkeepers
PRO
430
65k
Mobile First: as difficult as doing things right
swwweet
223
9.7k
Site-Speed That Sticks
csswizardry
10
680
Stop Working from a Prison Cell
hatefulcrawdad
270
20k
Bootstrapping a Software Product
garrettdimon
PRO
307
110k
Building Applications with DynamoDB
mza
95
6.5k
A better future with KSS
kneath
239
17k
Save Time (by Creating Custom Rails Generators)
garrettdimon
PRO
31
1.3k
For a Future-Friendly Web
brad_frost
179
9.8k
Transcript
ػց༁ʹ͓͚Δจܕɹɹ ɹ ɹ ɹɹɹύλϯͷ෦తར༻ Ԭٕज़Պֶେֶɹిؾܥ ࢁຊݚڀࣨ ใࠂऀ দాɹ૱࢙ ࢦಋڭһ ࢁຊɹӳ
ॿڭत ฏ18 2݄ 24
1.ݚڀഎܠ ύλϯ༁ͷ֓ཁ ɹ◆จ๏ɺ׳༻දݱΛݩʹύλϯΛ४උ ɹN1͕N2Λԉॿ͢Δ ɹN1 help N2 ɹ◆༁Λߦ͏จʹରͯ͠ύλϯΛͯ Ίɺ༁จͷग़ྗΛߦ͏ɻ
1.ݚڀഎܠ ର༁ύλϯ ɹN1͕N2Λԉॿ͢Δ ɹN1 help N2 ೖྗจ ɹI help you
ग़ྗจ ɹΘ͕ͨ͋͠ͳͨΛԉॿ͢Δ
1.ݚڀഎܠ ◆ ύλϯ༁ ɹ-ॏจɾෳจۤख ◆ ۙͷύλϯ༁ ɹ- ॏจɾෳจΛతͱͨ͠ύλϯ࡞ ɹ- ύλϯͷ૿Ճ
ɹ- ύλϯ༻ޮͷԼ →ύλϯΛ෦తʹར༻͢Δ͜ͱग़དྷͳ͍͔
2.త ෦తར༻Մೳͳύλϯͷ࡞ ɹ◆ύλϯར༻ޮͷ্ ɹ◆༁ݴޠͷॊೈͳରԠ ɹ◆༁ઌݴޠͰͷදݱͷ෯ͷ૿Ճ
3.CRESTύλϯ CRESTύλϯʹ͍ͭͯ ◆ॏจෳจͷ༁Λతͱͯ͠࡞ ◆୯ޠϨϕϧͰ12ສύλϯ ◆ઢܗ෦ͱඇઢܗ෦͔ΒͳΔ
3.CRESTύλϯ ◆ ઢܗ෦ ɹ- ଞͷཁૉʹஔ͖͑ͯશମͷҙຯ͕ มԽ͠ͳ͍ ◆ ඇઢܗ෦ ɹ- ஔ͖͑Δͱશମͷҙຯ͕มԽ͢Δ
ɹN1͕N2Λԉॿ͢Δ ɹN1 help N2
4.ؔ࿈ݚڀ ◆ਆΒ[2005]ɹίʔύεΛݩʹ୯ޠఔ ͷ໊ࢺ۟༁Λతͱͨ͠ύλϯ࡞ ◆നҪΒ[2003]ɹίʔύεΛݩʹจͷ ༁Λతͱͨ͠ύλϯΛ࡞ طଘͷύλϯ͔ΒύλϯΛ࡞͢Δͱ͍͏ ݚڀଘࡏ͠ͳ͍
5.ఏҊख๏ ύλϯΛͯΊΔࡍʹରԠ෦Λ୳͢ͷ Ͱඇޮ ɹ→͋Β͔͡ΊύλϯͷׂΛߦ͏ ɹ→ରԠ෦Λࣗಈతʹ୳͢ख๏͕ඞཁ N1͕N2ʹͳ͔ͬͯΒN3ΛV4^meireiɻ V4 N3 after N1
turn N2. N1͕N2ʹͳ͔ͬͯΒ after N1 turn N2.
5.ఏҊख๏ ◆ύλϯ͔Βඇઢܗ෦Λநग़ N1͕N2ʹͳ͔ͬͯΒN3ΛV4^meireiɻ V4 N3 after N1 turn N2.
5.ఏҊख๏ ύλϯઌ಄·ͨඌ-֤ඇઢܗ෦ Λύλϯީิͱͯ͠நग़ N1͕N2ʹͳ͔ͬͯΒ ʹͳ͔ͬͯΒN3ΛV4^meireiɻ V4 N3 after ɹafter N1
turn N2. V4 N3 after N1 turn ɹturn N2.
5.ఏҊख๏ ؚ·ΕΔઢܗ෦͕ಉ͡ύλϯಉ࢜Λ෦ ύλϯͱͯ͠ొ N1͕N2ʹͳ͔ͬͯΒ after N1 turn N2. ʹͳ͔ͬͯΒN3ΛV4^meireiɻ V4
N3 after
5.ఏҊख๏ લஔࢺɺ໊ؔࢺΛݩʹׂͨ͠ύλϯ ࡞ લஔࢺɹɹɹN1N2ʹV3^rentaiͷؒ ɹɹɹɹɹɹuntil N1 V3.past N2 ໊ؔࢺɹN1N2Ͱग़͔͚͍ͯΔؒ ɹɹɹɹɹɹwhile
N1 be on N2
6.ධՁ࣮ݧ 1. ɹ࡞ͨ͠ύλϯʹΑΔϚον 2. ɹ࡞ͨ͠ύλϯͷҙຯతͳରԠ
6.ධՁ࣮ݧ1 CRESTύλϯͷݪจ͔Β ɹ◆ϥϯμϜʹ100จ ɹ◆໊ؔࢺͰ࢝·Δ100จ ɹ◆લஔࢺͰ࢝·Δ100จ Λநग़ 4छྨͷύλϯΛͯΊΔ
6.ධՁ࣮ݧ1(݁Ռ)
࣮ݧจ*% Ϛον ໊ؔࢺ ඇม෦ $3&45ύλϯ લஔࢺ
6.ධՁ࣮ݧ1(݁Ռ) ֤จʹର͢ΔฏۉϚον CRESTύλϯ ඇઢܗ෦ લஔࢺ ໊ؔࢺ 16.6 100.7 0.6 196.7
6.ධՁ࣮ݧ2 ࡞ͨ͠ӳޠύλϯͱຊޠύλϯͰ ҙຯతͳରԠ͕ͱΕ͍ͯΔ͔ ˓ɿҙຯతͳରԠ͕ͱΕ͍ͯΔ ˚ɿӳɺӳ͍ͣΕ͔ʹؔͯ͠ɺҙຯͷ औΕͳ͍ඇઢܗ෦͕ଘࡏ͢Δ ×ɿҙຯతͳରԠ͕ͱΕ͍ͯͳ͍
6.ධՁ࣮ݧ2(݁Ռ) ύλϯͷҙຯతରԠ ˓ ˚ × ඇઢܗ෦ 43 47 10 લஔࢺ
30 43 27 ໊ؔࢺ 35 58 7
6.ධՁ࣮ݧ2(݁Ռ) ˓ɹN1 have a number of N2, ɹɹN1N2͕ࢁ͍ΔͷͰ ˚ɹIt is
said among N2 in N1 that ɹɹN1ͷN2ͷؒͰ ×ɹto V4 N3 ɹɹʹઌۦ͚ͯN3ΛV4.kako
7.ߟ ◆Ϛονͷ૿Ճ ɹ→༁ઌݴޠʹ͓͚Δදݱͷ͕Γ͔͍ ◆Ϛονͨ͠ύλϯʹ͍ͭͯ ɹ→༁ͷਖ਼ղͱͳΔύλϯଘࡏ͢Δ ɹ→จͷ༁ʹ༻Մೳ ◆શͳҙຯରԠͷऔΕͳ͍ύλϯ ɹ→ഉআ͢Δख๏ͷݕ౼͕ඞཁ
8.·ͱΊ CRESTύλϯΛݩʹ෦తύλϯΛ࡞ ඇઢܗ෦(લஔࢺɺ໊ؔࢺ)Λݩʹύ λϯΛׂɾ࠶ߏ ಛఆͷจܕʹ͍ͭͯύλϯϚον͕େ ෯ʹ૿Ճ ҙຯͷऔΕͳ͍ύλϯͷଘࡏ(ࠓޙͷ՝)