Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
Webページ検索結果の絞込みのための記述要素の提示
Search
自然言語処理研究室
March 31, 2010
Research
0
67
Webページ検索結果の絞込みのための記述要素の提示
久保木 武承, 山本 和英. Webページ検索結果の絞込みのための記述要素の提示. 言語処理学会第16回年次大会, pp.278-281 (2010.3)
自然言語処理研究室
March 31, 2010
Tweet
Share
More Decks by 自然言語処理研究室
See All by 自然言語処理研究室
データサイエンス14_システム.pdf
jnlp
0
400
データサイエンス13_解析.pdf
jnlp
0
510
データサイエンス12_分類.pdf
jnlp
0
360
データサイエンス11_前処理.pdf
jnlp
0
480
Recurrent neural network based language model
jnlp
0
140
自然言語処理研究室 研究概要(2012年)
jnlp
0
150
自然言語処理研究室 研究概要(2013年)
jnlp
0
110
自然言語処理研究室 研究概要(2014年)
jnlp
0
130
自然言語処理研究室 研究概要(2015年)
jnlp
0
210
Other Decks in Research
See All in Research
令和最新技術で伝統掲示板を再構築: HonoX で作る型安全なスレッドフロート型掲示板 / かろっく@calloc134 - Hono Conference 2025
calloc134
0
460
若手研究者が国際会議(例えばIROS)でワークショップを企画するメリットと成功法!
tanichu
0
130
論文紹介:Safety Alignment Should be Made More Than Just a Few Tokens Deep
kazutoshishinoda
0
150
Learning to (Learn at Test Time): RNNs with Expressive Hidden States
kurita
1
300
視覚から身体性を持つAIへ: 巧緻な動作の3次元理解
tkhkaeio
0
120
Combining Deep Learning and Street View Imagery to Map Smallholder Crop Types
satai
3
350
Agentic AI Era におけるサプライチェーン最適化
mickey_kubo
0
110
A History of Approximate Nearest Neighbor Search from an Applications Perspective
matsui_528
1
120
論文読み会 SNLP2025 Learning Dynamics of LLM Finetuning. In: ICLR 2025
s_mizuki_nlp
0
350
AIスパコン「さくらONE」のLLM学習ベンチマークによる性能評価 / SAKURAONE LLM Training Benchmarking
yuukit
2
920
超高速データサイエンス
matsui_528
1
330
When Learned Data Structures Meet Computer Vision
matsui_528
1
1.7k
Featured
See All Featured
実際に使うSQLの書き方 徹底解説 / pgcon21j-tutorial
soudai
PRO
196
70k
Raft: Consensus for Rubyists
vanstee
141
7.3k
16th Malabo Montpellier Forum Presentation
akademiya2063
PRO
0
32
Lessons Learnt from Crawling 1000+ Websites
charlesmeaden
PRO
0
970
Why Your Marketing Sucks and What You Can Do About It - Sophie Logan
marketingsoph
0
48
For a Future-Friendly Web
brad_frost
180
10k
Building Experiences: Design Systems, User Experience, and Full Site Editing
marktimemedia
0
340
The Director’s Chair: Orchestrating AI for Truly Effective Learning
tmiket
0
67
The Spectacular Lies of Maps
axbom
PRO
1
400
Designing Dashboards & Data Visualisations in Web Apps
destraynor
231
54k
Collaborative Software Design: How to facilitate domain modelling decisions
baasie
0
100
AI: The stuff that nobody shows you
jnunemaker
PRO
1
28
Transcript
長岡技術科学大学 久保木武承 山本和英 1 Webページ検索結果の絞り込みの ための記述要素の提示
背景と目的 既存の検索: 検索者が要求する説明があるとは限 らない 本研究の目的: テキスト本文の記述要素を提示する ⇒検索者の要求する説明文を含む ページを検索し易くする 2
コーパス 使い方 クエリ コーパスの使い方を教えてください (質問) コーパス・用例辞典の使い方 (コーパスの使用法) コーパスとはこういう物です (用語の説明) コーパスの使い方を説明をする 辞典の紹介
(本の通販) 検索結果 キーワードを抽出 「コーパスとはどんな 使い方をする物ですか?」 質問 3 既存手法 欲しいページは どれ?
「コーパス 使い方」 クエリ コーパスの使い方を教えてください (質問) コーパスとはこういう物です (用語の説明) コーパスの使い方を説明をする 辞典の紹介 (本の通販) 検索先ページ
コーパスの「関連質問」 コーパスの「使い方」 用例辞典の「使い方」 コーパスの「説明」 コーパスの「関連図書」 記述要素 生成 コーパス・用例辞典の使い方 (コーパスの使用法) 生成された記述要素 検索結果 4 -利点- ページの内容にあわせて 検索ができる 提案手法
従来の検索 ・キーワードを含むページの提示 ⇒キーワードさえ含まれていれば、本 文の内容にかかわらず提示する 提案手法 ・ページ本文の内容を表す記述要素を 提示 ⇒文章の内容を考慮した検索結果を 提示 5
理論/まとめ
・記述要素の目的 本文が何を伝えたくて書かれたかを 提示する ・本稿における記述要素の定義 [命題]の<記述要素>は? 例) [コーパス]の<使い方>は? [りんご]の<産地>は? [ローパスフィルタ]の<機能>は? 6
定義/記述要素
Wikipediaの「サブセクション-本文テ キスト」の関係からを利用 本文抽出 形態素解析 本文中の 形態素/上位概念の tfidfを取得 7 手法/記述要素の特徴 記述要素の特徴
として保存
特徴が一致する記述要素を 正解候補として提示 本文中の 形態素/上位概念を取得 8 手法/記述要素の選択 本文抽出 コーパス・用例辞典の 使い方 (コーパスの使用法)
検索結果 ・ ・ ・ 記述要素A 特徴データ 記述要素B 特徴データ 要素の一致数の高い物 を選択
1.Closed test Wikipediaのテキストで記述要素の正解候 補を提示 2.Open test Webから人手で作製した正解セットに対し て記述要素の正解候補を提示 正解セット=(記述要素,本文テキスト)ペア 要素のマッチ数の多い物を
9 実験
問題点 Open testの性能が低すぎる 再現率 適合率 F値 形態素 Closed test 0.96
0.83 0.89 上位概念 Closed test 0.94 0.69 0.80 形態素 Open test 0.02 0.02 0.02 上位概念 Open test 0.03 0.03 0.03 10 結果
課題: Open testにも通用する選択手法が必要 対策: 記述要素の特徴データが不的確? ⇒文の内容を表すより的確な特徴の検討 11 考察