Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
係り受け関係を利用した感情生起表現の抽出
Search
Sponsored
·
Your Podcast. Everywhere. Effortlessly.
Share. Educate. Inspire. Entertain. You do you. We'll handle the rest.
→
自然言語処理研究室
March 31, 2006
Research
0
130
係り受け関係を利用した感情生起表現の抽出
遠藤 大介、齋藤 真実、山本 和英. 係り受け関係を利用した感情生起表現の抽出. 言語処理学会第12回年次大会, pp.947-950 (2006.3)
自然言語処理研究室
March 31, 2006
Tweet
Share
More Decks by 自然言語処理研究室
See All by 自然言語処理研究室
データサイエンス14_システム.pdf
jnlp
0
400
データサイエンス13_解析.pdf
jnlp
0
510
データサイエンス12_分類.pdf
jnlp
0
360
データサイエンス11_前処理.pdf
jnlp
0
490
Recurrent neural network based language model
jnlp
0
140
自然言語処理研究室 研究概要(2012年)
jnlp
0
150
自然言語処理研究室 研究概要(2013年)
jnlp
0
110
自然言語処理研究室 研究概要(2014年)
jnlp
0
140
自然言語処理研究室 研究概要(2015年)
jnlp
0
220
Other Decks in Research
See All in Research
情報技術の社会実装に向けた応用と課題:ニュースメディアの事例から / appmech-jsce 2025
upura
0
310
Collective Predictive Coding and World Models in LLMs: A System 0/1/2/3 Perspective on Hierarchical Physical AI (IEEE SII 2026 Plenary Talk)
tanichu
1
250
Ankylosing Spondylitis
ankh2054
0
120
J-RAGBench: 日本語RAGにおける Generator評価ベンチマークの構築
koki_itai
0
1.3k
大規模言語モデルにおけるData-Centric AIと合成データの活用 / Data-Centric AI and Synthetic Data in Large Language Models
tsurubee
1
500
生成AI による論文執筆サポート・ワークショップ 論文執筆・推敲編 / Generative AI-Assisted Paper Writing Support Workshop: Drafting and Revision Edition
ks91
PRO
0
120
第二言語習得研究における 明示的・暗示的知識の再検討:この分類は何に役に立つか,何に役に立たないか
tam07pb915
0
1.2k
Thirty Years of Progress in Speech Synthesis: A Personal Perspective on the Past, Present, and Future
ktokuda
0
170
ロボット学習における大規模検索技術の展開と応用
denkiwakame
1
210
2026-01-30-MandSL-textbook-jp-cos-lod
yegusa
0
230
A History of Approximate Nearest Neighbor Search from an Applications Perspective
matsui_528
1
160
Attaques quantiques sur Bitcoin : comment se protéger ?
rlifchitz
0
140
Featured
See All Featured
Making Projects Easy
brettharned
120
6.6k
HDC tutorial
michielstock
1
400
Visualizing Your Data: Incorporating Mongo into Loggly Infrastructure
mongodb
49
9.9k
Ecommerce SEO: The Keys for Success Now & Beyond - #SERPConf2024
aleyda
1
1.8k
Rails Girls Zürich Keynote
gr2m
96
14k
Site-Speed That Sticks
csswizardry
13
1.1k
Data-driven link building: lessons from a $708K investment (BrightonSEO talk)
szymonslowik
1
920
The Cost Of JavaScript in 2023
addyosmani
55
9.5k
How to Talk to Developers About Accessibility
jct
2
140
Claude Code どこまでも/ Claude Code Everywhere
nwiizo
61
52k
Marketing Yourself as an Engineer | Alaka | Gurzu
gurzu
0
130
The B2B funnel & how to create a winning content strategy
katarinadahlin
PRO
1
280
Transcript
1 係り受け関係を利用した 感情生起表現の抽出 長岡技術科学大学 電気系 遠藤 大介 齋藤 真実 山本 和英 平成18年3月16日
2 感情生起表現 書き手の感情が生起した要因 ・「嬉しい」や「悲しい」のように書き 手の感情を直接表している表現とは異な る ・「上手くいかない」「自分だけ処分さ れる」のような 2 文節
3 目的 ▪フレーズ辞書の構築 ・利点 → パタン辞書とは違い、意味理解などの 高度な処理が不必要 → 特徴的な表現が抽出できる可能性があ る
4 処理の流れ 抽出した文の構文解析 感情表現の係り元 2 文節を抽出 抽出した 2 文節をフィルタリング コーパスから感情生起表現を
含む文の抽出 感情生起表現
5 種用感情表現辞書 ▪既存の感情表現事典から一部使用 感情分類 10 分類 ( 喜怒哀怖恥好厭昂安驚 )
登録語数 2167 語収録 ↓ 種用感情表現辞書に登録した表現数 → 333 語 ➔楽しい ( 喜 ) 、腹立たしい ( 怒 ) 等 種用感情表現辞書の条件 - 「形容詞」または「名詞 - 形容動 詞語幹」
6 提案手法 (1/3) ▪感情生起表現を含む文の抽出 2 つの条件を満たす文から感情生起表 現を抽出する。 ➔感情表現を含む文 ➔「のが」もしくは「ことが」を含む
文 例: ・この面白さを伝えようにもなかなか上手く いかない ( のが ) もどかしいところです。
7 提案手法 (2/3) ▪感情生起表現候補の抽出 南瓜を用いて構文解析を行う。 例 人前に 出る (
のが )恥ずかしい 典型的な 長男。 感情表現 : 恥ずかしい 感情生起表現 : 人前に出るのが
8 提案手法 (3/3) ▪品詞情報によるフィルタリング 「 人前に 出るのが 」 「連体詞」「名詞 -
非自立」「名詞 - 数」 「形容詞 - 自立」 「名詞 - サ変接続」 「名詞 - 形容動詞語幹」 「動詞」 例:「ことが」「大きな」等の表現 例:「安い」「会う」等の表現 × ◦
9 評価実験 (1/3) ▪使用したコーパス→ Web コーパス Web コーパスを利用する利点 ➔
大量のテキストを容易に収集でき る。 ➔新聞に含まれるテキストよりも掲示 板や Weblog など主観的な文章が存在 する。 ➔多くの人が書いているため、様々な 表現が抽出できる。
10 評価実験 (2/3) ▪感情生起表現の抽出数推移 2131 8043 10059/10174 Webコーパス1 Webコーパス2 異なり数/合計
抽出表現数[個] 抽出表現数 ・ Web コーパス 1 : 0.4GB 486 万文 ・ Web コーパス 2 : 1.0GB 898 万文 合計と異なり数の差が小さい → コーパス量の増加で表現数が増加する
11 評価実験 (3/3) A[%] B[%] C[%] D[%] 21 39 3
37 15 25 4 56 総合 16 28 4 52 Webコーパス1 Webコーパス2 コーパス別抽出精度 評価 A :「提示している感情を生起する」 評価 B :「人によっては提示している感情を生起する」 評価 D :「表現が感情を生起する要因とならない」 評価 C :「提示している感情以外の感情を生起する」 喜:自然とふれあうことが 哀:はかなくきえてしまうのが
12 提案手法についての検討 提案手法の利点 ➔コーパスから取り出す情報が係り受け関 係と品詞情報と末尾の字面である ➔種となった感情表現と同じ感情分類の感 情生起表現が抽出できる 提案手法の欠点
➔感情表現を含まない文からの抽出が出来 ない ➔3 文節を抽出しなければならない表現が 存在するため、拡張が必要
13 展望 ▪欠点 → 表現が大量に存在するため収集が困難 抽出表現数の増加 ➔コーパスの量を増やす ➔「のが」、「ことが」以外の表現へ の対応
精度向上 ➔抽出誤りに対する 3 文節目の補完
14 抽出例 (AB) ▪ A わいわいやるのが ( 喜 )
苗が大きくなっていくことが ( 喜 ) ズカズカ入り込んでこられるのが ( 怒 ) 残業代がつかないのが ( 哀 ) 展開が読めてしまうのが ( 厭 ) どうにも出来ないのが ( 昂 ) ▪ B 人と話すのが ( 喜 ) アクションが見れるのが ( 喜 ) 歳をとることが ( 哀 ) 答え合わせをするのが ( 怖 ) 絵を描くのが ( 好 ) 話題を共有することが ( 安 )
15 抽出例 (CD) ▪ C 信頼を得られていないのが ( 怒 )
情報を蓄積しておくことが ( 怖 ) ひとつだけ気に入らなかったのが ( 恥 ) ▪ D 世界に没頭するのが ( 喜 ) データとして利用されるのが ( 怒 ) 感じに老けちゃってるのが ( 哀 ) 量が減り続けているのが ( 怖 ) そのまま持っていくのが ( 恥 ) 特に寝るのが ( 好 ) 世の中になったのが ( 厭 ) アキラと遊ぶのが ( 安 ) 名前があったのが ( 驚 )