Lock in $30 Savings on PRO—Offer Ends Soon! ⏳
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
小学生の読解支援に向けた語釈文による換言
Search
自然言語処理研究室
September 30, 2012
Research
0
100
小学生の読解支援に向けた語釈文による換言
梶原智之, 山本 和英. 小学生の読解支援に向けた語釈文による換言. NLP若手の会 第7回シンポジウム, (発表1) (2012.9)
自然言語処理研究室
September 30, 2012
Tweet
Share
More Decks by 自然言語処理研究室
See All by 自然言語処理研究室
データサイエンス14_システム.pdf
jnlp
0
390
データサイエンス13_解析.pdf
jnlp
0
500
データサイエンス12_分類.pdf
jnlp
0
350
データサイエンス11_前処理.pdf
jnlp
0
470
Recurrent neural network based language model
jnlp
0
140
自然言語処理研究室 研究概要(2012年)
jnlp
0
140
自然言語処理研究室 研究概要(2013年)
jnlp
0
110
自然言語処理研究室 研究概要(2014年)
jnlp
0
130
自然言語処理研究室 研究概要(2015年)
jnlp
0
210
Other Decks in Research
See All in Research
AIスパコン「さくらONE」の オブザーバビリティ / Observability for AI Supercomputer SAKURAONE
yuukit
2
980
"主観で終わらせない"定性データ活用 ― プロダクトディスカバリーを加速させるインサイトマネジメント / Utilizing qualitative data that "doesn't end with subjectivity" - Insight management that accelerates product discovery
kaminashi
14
14k
HoliTracer:Holistic Vectorization of Geographic Objects from Large-Size Remote Sensing Imagery
satai
3
300
まずはここから:Overleaf共同執筆・CopilotでAIコーディング入門・Codespacesで独立環境
matsui_528
2
850
ロボット学習における大規模検索技術の展開と応用
denkiwakame
1
170
J-RAGBench: 日本語RAGにおける Generator評価ベンチマークの構築
koki_itai
0
1k
CoRL2025速報
rpc
2
3.5k
20250725-bet-ai-day
cipepser
3
540
投資戦略202508
pw
0
580
Combining Deep Learning and Street View Imagery to Map Smallholder Crop Types
satai
3
260
国際論文を出そう!ICRA / IROS / RA-L への論文投稿の心構えとノウハウ / RSJ2025 Luncheon Seminar
koide3
10
6.3k
[論文紹介] Intuitive Fine-Tuning
ryou0634
0
150
Featured
See All Featured
The Language of Interfaces
destraynor
162
25k
Typedesign – Prime Four
hannesfritz
42
2.9k
Dealing with People You Can't Stand - Big Design 2015
cassininazir
367
27k
Building a Modern Day E-commerce SEO Strategy
aleyda
45
8.3k
Testing 201, or: Great Expectations
jmmastey
46
7.8k
The Cult of Friendly URLs
andyhume
79
6.7k
The MySQL Ecosystem @ GitHub 2015
samlambert
251
13k
Why Our Code Smells
bkeepers
PRO
340
57k
Agile that works and the tools we love
rasmusluckow
331
21k
GraphQLの誤解/rethinking-graphql
sonatard
73
11k
The Illustrated Children's Guide to Kubernetes
chrisshort
51
51k
Building Flexible Design Systems
yeseniaperezcruz
330
39k
Transcript
খֶੜͷಡղࢧԉʹ͚ͨ ޠऍจʹΑΔݴ ֿݪஐ೭ɹࢁຊӳ ʢԬٕज़Պֶେֶʣ
ʲΩʔϫʔυʳݴ ੍ݶݴޠ ςΩετ؆୯Խ จষಡղࢧԉ ݚڀ֓ཁ ֶशجຊޠኮ ޠ ࢠͲ͚৽ฉ
Ұൠ͚৽ฉ খֶࠃޠࣙయ ؒ૯ޠኮ ສޠ ʲ࡞෩ʳ ɹͦͷ࡞ऀͷಛ ҟͳΔ࡞෩Ͱਓؾ ҟͳΔಛͰਓؾ ʢ࡞෩ˠಛʣ
ݚڀͷഎܠ • શࠃͷখֶߍͳͲͰ৽ฉΛ༻͍ͨतۀ – ৽ฉͷ༰Λཁͯ͠·ͱΊΔ – ৽ฉͷ༰Λͱʹ౼͢Δ • ৽ฉʹখֶੜʹͱ͍ͬͯ͠ޠ͕ଟ͍ •
ࢠͲ͚৽ฉߋ৽͕গͳ͍ ͔͠͠
ֶशجຊޠኮʹͳΔ·Ͱ܁Γฦ͠ খֶੜͷͨΊͷจষಡղࢧԉ తͱఏҊख๏ w ֶशجຊޠኮʹجͮ͘ޠኮ੍ݶ ̍
w ޠऍจʹΑΔݴɾऍ͚ ̎
• ݟग़͠ޠͱࢺ͕Ұக͢ΔޠΛޠऍจ͔Βநग़ ɹɹɹೖྗྫɿҟͳΔ࡞෩Ͱਓؾ ɹɹݟग़͠ޠɿ࡞෩ ɹɹɹޠऍจɿͦͷ࡞ऀͷಛ ɹɹɹݴରɿʢ࡞෩ ಛʣ
ɹɹɹग़ྗྫɿҟͳΔಛͰਓؾ ޠऍจʹΑΔݴ
• αม໊ࢺͷޠऍจ͔ΒݴରΛநग़ ɹɹɹೖྗྫɿਓ͕ෛইͨ͠ ɹɹݟग़͠ޠɿෛই ɹɹɹޠऍจɿ͚͕Λ͢Δ͜ͱ ɹɹɹݴରɿʢෛই͢Δ ͚͕Λ͢Δʣ
ɹɹɹग़ྗྫɿਓ͕͚͕Λͨ͠ ޠऍจʹΑΔݴ
• ಉදݱΛҰޠͰநग़Ͱ͖ͳ͍ͱ͖ऍ͚ ɹɹɹೖྗྫɿֶॴͷ࠶ڵɺɾɾɾ ɹɹݟग़͠ޠɿ࠶ڵ ɹɹɹޠऍจɿ͓ͱΖ͑ͨΓɺ΄ΖΜͩΓͨ͠ͷ͕ɺ ɹɹɹɹɹɹɹ͏Ұ͔͞ΜʹͳΔ͜ͱ ɹɹɹݴରɿʢ࠶ڵ ͏Ұ͔͞ΜʹͳΔ͜ͱʣ
ɹɹɹग़ྗྫɿֶॴͷ࠶ڵɺɾɾɾ ɹɹɹɹɹɹɹ࠶ڵͱɺ͏Ұ͔͞ΜʹͳΔ͜ͱͰ͋Δɻ ޠऍจʹΑΔऍ͚
ޠऍจʹΑΔऍ͚ • ෆཁͳදݱͷআ ɹɹɹೖྗྫɿେֶͷΩϟϯύε ɹɹݟग़͠ޠɿΩϟϯύε ɹɹɹޠऍจɿେֶͳͲͷݐ͕͋Δ
ɹɹɹݴରɿʢΩϟϯύε ݐ͕͋Δʣ ɹɹɹग़ྗྫɿେֶͷΩϟϯύε ɹɹɹɹɹɹɹΩϟϯύεͱɺݐ͕͋ΔͰ͋Δɻ
࣮ݧ • ࣮ݧ݅ • ίʔύεɿҰൠ͚৽ฉจ ɹɹɹɹʢຖখֶੜ৽ฉͱ༰͕Ұக͢Δจʣ • ݴࣝɿνϟϨϯδখֶࠃޠࣙయ
ޠ୯ҐͰͷ࣮ݧ݁Ռ ݴ͕ ඞཁͳશޠ খֶࠃޠࣙ యͷܝࡌ ༗ɿ ʢʣ ແɿ ݴͨ͠PS ऍ͚ͨ͠ ݴɿ ऍɿ
࣮ݧ จ୯ҐͰͷ࣮ݧ݁Ռ ݴ͕ ඞཁͳશจ ݴ ɹ༗ɿ ඇจɿ
ແɿ ऍ ༗ɿ ແɿ ݴͱऍ ͷ߹Θͤ ྆ํ༗ɿ ྆ํແɿ ݴͷΈɿ ऍͷΈɿ จ๏͕ ਖ਼͍͠ग़ྗ ʢʣ ˞ඇจɿจ๏͕ਖ਼͘͠ͳ͍จ
ࣦഊྫ • খֶࠃޠࣙయʹඇܝࡌͷޠ • ޠதͷޠʢʣ ɹˠෳͷࠃޠࣙయΛ༻͍ͯཏੑΛ্͛Δ ޠ
छྨ ༳Ε ಈࢺΛ໊ࢺԽͨ͠ޠ ࣾՈ খֶߍͰͷֶशʹ༻͍ͳ͍ղͳޠ ηϛφʔ ֎དྷޠ
ࣦഊྫ • ֨ॿࢺʮʹʯͷݴ • తΛද͢ʮʹʯͷલଟ͕͘αม໊ࢺ ɹˠʮʙ͜ͱʹʯΛʮʙͨΊʹʯʹม छྨ
ೖྗྫ ग़ྗྫ ࣌ؒ ਂʹى͖Δ ਅதʹى͖Δ ॴ ڷཬʹؼΔ ;Δ͞ͱʹؼΔ త ٹԉʹ͔͏ ✕ɿॿ͚Δ͜ͱʹ͔͏ ˓ɿॿ͚ΔͨΊʹ͔͏
ߟ • ऍΛ͚ͨޠͷݴ • ಉ ্Ґ ֓೦ޠֶ͕शجຊޠኮͷ߹͕͋Δ ɹˠ8PSE/FU͔Βಉ ্Ґ ֓೦ޠΛநग़
ಉ֓೦ޠ ্Ґ֓೦ޠ ࠶ڵ ෮׆ मཧ ڊঊ ໊ਓ ܳज़Ո
ࠓޙͷల • খֶੜʹΑΔධՁ Ø খֶੜ৽ฉ Ø Ұൠ͚৽ฉ Ø ݴɾޠኮ੍ݶͨ͠Ұൠ͚৽ฉ – ཧղ͘͢͠ͳ͔ͬͨʁ –
ใ͕ޡͬͯΘ͍ͬͯͳ͍͔ʁ
ใΛΔ͖͔ • ࡉ͔͍ใΛΔ͜ͱͰςΩετ؆୯Խ ɹɹݟग़͠ޠɿ࠲ ɹɹɹޠऍจɿ;Ͷ͕ɺւதͷؠͳͲʹ ɹɹɹɹɹɹɹΓ্͛ͯɺಈ͚ͳ͘ͳΔ͜ͱ ɹɹɹݴରɿʢ࠲͢Δ ಈ͚ͳ͘ͳΔʣ ɹɹɹݴྫɿધ͕࠲͠ɺʜ
ɹɹɹɹɹˠɹધ͕ಈ͚ͳ͘ͳΓɺʜ
ಉ֓೦ޠɾ্Ґ֓೦ޠͷݴ • ਓؾɹˠɹ࣭ʢ্Ґ֓೦ʣ • ͯ͢ɹˠɹͳ͠ • ྟΉɹˠɹߦ͘ʢಉ֓೦ʣ • ຊಊɹˠɹͳ͠ •
ڊঊɹˠɹ໊ਓʢಉ֓೦ʣ • खֻ͚ΔˠҭͯΔʢಉ֓೦ʣ • ढ͏ɹˠɹ୰͘ʢ্Ґ֓೦ʣ • ΘΓˠΘΓʢಉ֓೦ʣ • ூΓɹˠɹͳ͠ • ηϦɹˠɹͳ͠ • φζφɹˠɹͳ͠ • ࣣɹˠɹͳ͠ • ࣣɹˠɹͳ͠ • ࢢɹˠɹͳ͠ • ۠Ҭɹˠɹํʢಉ֓೦ʣ • ࠭भɹˠɹखʢ্Ґ֓೦ʣ • ೖΓߐɹˠɹւʢߏཁૉʣ • ɹˠɹւʢߏཁૉʣ • ڝΓɹˠɹചങʢಉ֓೦ʣ • ࢧԉɹˠɹॿ͚Δʢಉ֓೦ʣ • ౣˠ൵͍͠ʢ্Ґ֓೦ʣ • ͱ͢ɹˠɹͳ͠ • ࠶ڵɹˠɹ෮׆ʢಉ֓೦ʣ • ఼ࣾɹˠɹͳ͠ • ͓ٶɹˠɹॅʢ্Ґ֓೦ʣ • ྟΉɹˠɹߦ͘ʢಉ֓೦ʣ • ങਓɹˠɹਓʢಉ֓೦ʣ • ڝΓɹˠɹചങʢಉ֓೦ʣ • ཽɹˠɹͳ͠ • ଧ্ͪ͛Δˠελʔτʢಉ֓೦ʣ • େࠜɹˠɹͳ͠ • ݱঢ়ɹˠɹ༷ࢠʢ্Ґ֓೦ʣ • ݪൃɹˠɹͳ͠ • ॳɹˠɹͳ͠ • ݪൃɹˠɹͳ͠ • ڝΔɹˠɹઓ͏ʢಉ֓೦ʣ • ͍͔͚Δˠฉ͘ʢಉ֓೦ʣ • શյɹˠɹ่ΕΔʢಉ֓೦ʣ • ଟ༷ˠ͍Ζ͍Ζʢಉ֓೦ʣ • ڝΔɹˠɹઓ͏ʢಉ֓೦ʣ • ځ͢Δɹˠɹͳ͠ • ͨͨΈ͔͚Δɹˠɹͳ͠ • ݯɹˠɹͳ͠ • ݪൃɹˠɹͳ͠ • ཁɹˠɹத৺ʢಉ֓೦ʣ • ड͚ܧ͙ˠܧ͙ʢಉ֓೦ʣ • ࢢɹˠɹͳ͠ • ۠Ҭɹˠɹํʢಉ֓೦ʣ • ࣣɹˠɹͳ͠ • ৼΔ͏ˠߦಈʢಉ֓೦ʣ • ਓؾɹˠɹ࣭ʢ্Ґ֓೦ʣ • ։ນɹˠɹ։࢝ʢಉ֓೦ʣ • ໊ɹˠɹ൘ʢಉ֓೦ʣ • ʹ͗Θ͏ˠޭʢಉ֓೦ʣ • ͯ͢ɹˠɹͳ͠ • ࢈ɹˠɹʢಉ֓೦ʣ • །Ұɹˠɹݸੑʢ্Ґ֓೦ʣ • اըɹˠɹܭըʢಉ֓೦ʣ • ɹʢʣ
খֶࠃޠࣙయʹඇܝࡌͷޠ • ۚϝμϧ • ͦΕΒ • ͓Β͍ • ྆ •
٫ • ଞߍ • খதֶߍ • ߍ • ࣾՈ • ࡢळ • ηϛφʔ • ૹΓग़͢ • ݄̕ • ࣘ͘ • յ • ༳Ε • βοΫ • ͩ͜ΘΓ • ങ͍ٻΊΔ • δϟύχʔζ ɹɹɹɹͳͲ
ݴࣦഊྫ • ྟΉͱɺ໘͍ͯ͠Δ͜ͱͰ͋Δ ɹˠɹྟΉͱɺ͍ͯ͘Δ͜ͱͰ͋Δ • ࡇΓظؒதͷΈൢച͞Ε͍ͯΔ ɹˠɹࡇΓظؒதͷΈΛചΒΕ͍ͯΔ • ڭࣨΛؒआΓ͍ͯͨ͠ ɹˠɹڭࣨΛۚΛΒͬͯ෦ΛआΓ͍ͯͨ
• ԣࢢʹͱආ͍ͯ͠Δ ɹˠɹԣࢢʹͱ҆શͳͱ͜Ζʹʹ͍͛ͯΔ • ్தͰؒҾ͖ʹ๚ΕΔ ɹˠɹ్தͰͱ͜ΖͲ͜Ζ͵͖ͱΔ͜ͱʹ๚ΕΔ • ͕ͳ͞Εͨͦ͏ͩ ɹˠɹ͕͢ΔΕͨͦ͏ͩ