In the Name of Whiskey

In the Name of Whiskey

Using Machine Learning and TensorFlow to make sense of scotches. Presented at Ruby on Ales 2016.

62b2249a42d624dc93357931f0f5d2f1?s=128

juliaferraioli

April 05, 2016
Tweet

Transcript

  1. 11.

    11 • A deep, abiding love for whiskey • Some

    manageable, objective data • Enthusiasm for math… • ...or making computers do math What do we have?
  2. 17.

    17 @juliaferraioli Distillery → Balvenie Body → 3 Notes →

    Honey:3, Floral:2, ... Region → Speyside Lat / Lon → Lat:57.4527074, Lon:-3.1237258 Data example
  3. 18.
  4. 20.

    20 Operates over tensors: n-dimensional arrays Using a flow graph:

    data flow computation framework A quick look at TensorFlow • Intuitive construction • Fast execution • Train on CPUs, GPUs • Run wherever you like
  5. 21.

    21 @juliaferraioli import tensorflow as tf sess = tf.InteractiveSession() #

    don’t mess with passing around a session whiskey_is_fun = tf.constant([6.2, 12.0, 5.9], shape = [1, 3]) beer_is_ok_too = tf.constant([9.3, 1.7, 8.8], shape = [3, 1]) matrices_omg = tf.matmul(whiskey_is_fun, beer_is_ok_too) print(matrices_omg.eval()) # => [[ 129.97999573]] sess.close() # let’s be responsible about this What does TensorFlow code look like?
  6. 22.
  7. 25.

    25 @juliaferraioli pick k random n-dimensional cluster centers while not

    converged and num_steps < max_steps: assign points to nearest cluster center update cluster centers to be the mean of the points assigned to it return cluster centers, memberships The algorithm
  8. 27.
  9. 31.

    31 @juliaferraioli initialize hidden, output layers (weights and biases) define

    the training step (optimization) while num_steps > limit: grab next set of training data and labels perform training step evaluate on test data The algorithm (simplified)
  10. 33.
  11. 41.

    41 @juliaferraioli Resources • TensorFlow: http://bit.ly/tensorflow-oss • k-means Clustering Single

    Malts: http://bit.ly/k-means-scotch • k-means in TensorFlow: http://bit.ly/k-means-tensorflow • Feed forward neural networks in TensorFlow: http://bit.ly/ff-nn • Learning TensorFlow: http://bit.ly/learn-tensorflow • Gentle Introduction to ML: http://bit.ly/gentle-intro-ml