Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
BIRのアーキテクチャと データ処理
Search
Jumpei Takiyasu
February 18, 2021
Technology
0
880
BIRのアーキテクチャと データ処理
Jumpei Takiyasu
February 18, 2021
Tweet
Share
More Decks by Jumpei Takiyasu
See All by Jumpei Takiyasu
BIRのアーキテクチャと 技術選定
juntaki
0
630
ROSでSLAMラジコンをつくる
juntaki
0
3.2k
6足歩行ロボットをつくった
juntaki
0
580
GoでAPIサーバをはやくつくる
juntaki
26
12k
Undocumented!? firebase
juntaki
0
200
3Dプリンタと4足歩行プロトタイプ
juntaki
0
6.4k
アンケートの集計システムを作った
juntaki
0
3.1k
Goならわかる Linuxのメモリ管理
juntaki
13
6k
社内勉強会の管理ツール Sugoi Meetupをつくった
juntaki
0
730
Other Decks in Technology
See All in Technology
Amazon_CloudWatch_ログ異常検出_導入ガイド
tsujiba
4
1.5k
pandasはPolarsに性能面で追いつき追い越せるのか
vaaaaanquish
4
4.4k
【若手エンジニア応援LT会】AWSで繋がり、共に成長! ~コミュニティ活動と新人教育への挑戦~
kazushi_ohata
0
180
端末が簡単にリモートから操作されるデモを通じて ソフトウェアサプライチェーン攻撃対策の重要性を理解しよう
kitaji0306
0
170
ABEMA のコンテンツ制作を最適化!生成 AI x クラウド映像編集システム / abema-ai-editor
cyberagentdevelopers
PRO
1
180
大規模データ基盤チームのオンプレTiDB運用への挑戦 / dpu-tidb
cyberagentdevelopers
PRO
1
110
日経電子版におけるリアルタイムレコメンドシステム開発の事例紹介/nikkei-realtime-recommender-system
yng87
1
490
なんで、私がAWS Heroに!? 〜社外の広い世界に一歩踏み出そう〜
minorun365
PRO
6
1.1k
ガチ勢によるPipeCD運用大全〜滑らかなCI/CDを添えて〜 / ai-pipecd-encyclopedia
cyberagentdevelopers
PRO
3
200
10分でわかるfreee エンジニア向け会社説明資料
freee
18
520k
新卒1年目が向き合う生成AI事業の開発を加速させる技術選定 / ai-web-launcher
cyberagentdevelopers
PRO
7
1.5k
[AWS JAPAN 生成AIハッカソン] Dialog の紹介
yoshimi0227
0
150
Featured
See All Featured
The Illustrated Children's Guide to Kubernetes
chrisshort
48
48k
Documentation Writing (for coders)
carmenintech
65
4.4k
Designing Experiences People Love
moore
138
23k
A Tale of Four Properties
chriscoyier
156
23k
Mobile First: as difficult as doing things right
swwweet
222
8.9k
Build your cross-platform service in a week with App Engine
jlugia
229
18k
jQuery: Nuts, Bolts and Bling
dougneiner
61
7.5k
RailsConf & Balkan Ruby 2019: The Past, Present, and Future of Rails at GitHub
eileencodes
131
33k
Helping Users Find Their Own Way: Creating Modern Search Experiences
danielanewman
29
2.2k
Large-scale JavaScript Application Architecture
addyosmani
510
110k
How to Think Like a Performance Engineer
csswizardry
19
1.1k
Designing the Hi-DPI Web
ddemaree
280
34k
Transcript
BIRのアーキテクチャと データ処理 Jumpei Takiyasu @juntaki M3, Inc.
自己紹介 滝安純平(@juntaki) BIRエンジニアチームリーダー兼BIRカンパニー執行役員 バックエンドとWebフロントエンドエンジニア、兼プロダクトマ ネージャをやっています。 もともと組み込みLinuxのカーネル開発をしていました。最近 はFlutterでなにか作っています。 好きな言語はGoʕ◔ϖ◔ʔ 2
今日話すこと • BIRのビジネスとシステムアーキテクチャ(再) • 回答データの活用方法・Cloud Schedulerを使ったバッチ処理 3
BIRのビジネスと システムアーキテクチャ 4
BIR - ビジネスインテリジェンス&リサーチ 医療従事者の会員向けアンケート(国内最大の医師パネル)をベースに、製薬 会社へのマーケティング支援を提供する事業を行っています。 5
アンケートページ
アンケートビジネスの流れ 1. アンケートを作る 2. 配信・督促をがんばる 3. データを整理する 4. データを可視化する アンケートを集める
データを活用できるよ うにする 7
アンケートシステムのアーキテクチャ 8
アンケートシステムのアーキテクチャ 1.アンケートを作る 2.配信・督促をがんばる 3.データを整理する 4. データを可視化する 9
Tableauとは データ可視化ツール • BigQueryやPostgreSQL、 Excelまで色々なデータに接 続可能 • データ整形、集計、可視化ま で、やりたいことは何でもでき る※すごいツール
※使いこなせば…!
Tableauの活用方法 1. 社内向け指標の可視化 a. アンケートの回答状況 b. 各種配信チャネルの流入状況 c. クラウド環境の課金状況 2.
納品物作成 a. クライアント向けダッシュボード b. データダウンロードツール
アンケートで扱うデータと格納先(概要) 配信に使うデータ • 配信ユーザID • アンケートID • ステータス 回答データ •
ユーザID • アンケートID • 回答内容 M3トップページ並のアクセス量 → Cloud Spanner 各アンケートシステムの 性能要件は一般的なWebアプリ → Cloud SQL / Aurora
可視化したいもの 内部的には… • 回答状況 • 各種KPI 納品物では… • 回答&設問 •
会員属性 配信システムの Spannerにある アンケートシステ ムのDB M3会員基盤 各所にあるデータを集めて可視化しなくては使えない 直接参照すると、可視化による負荷を各々考慮する必要があり設計難度が上がる BigQueryへ集約
バッチ処理 BigQueryにデータを集約させるための処理を Webアプリとは非同期に動かしたい • cronジョブ / SpringBatchなどフレームワークの機能 ◦ バッチ専用インスタンスが必要 ◦
アプリごとに作るので統一した管理が難しい • ワークフローエンジン(Digdag, Airflow, etc..) ◦ 依存関係がほぼ無いのでオーバースペック +失敗したときの復旧が面倒(前日の日次バッチ処理など …)
Cloud Schedulerをつかったバッチ処理 BIR独自の バッチ起動処理 他チームがDigdagから 使っていた処理を流用
バッチ処理起動用サーバ(bir-batch) YAMLファイルでエンドポイントを生成する超シンプル独自フレームワーク (Digdagも検討したが、BIRは処理間の依存がなかったので採用せず) • 指定されたFargateにパラメータを渡して起動(現在日付はクエリパラメータ) • 失敗を検知してリトライ&リトライ失敗で通知 - endpoint: /ibis/update_answer
image: 'ibis-container:latest' cmd: /work/run.sh cpu: 256 memory: 512 env: BQ_KEY: 'credential' PASSWORD: 'password' retryable: true 処理ごとに こんな感じの YAMLを書くだけ
この構成のメリット&デメリット メリット Fargateで都度コンテナを立ち上げるので、リソースを食い合って共倒れない Web APIになっているので、再実行が簡単(?date=20210220とすれば過去分も)Cloud Schedulerのコンソールが優秀 • DBメンテナンスでバッチ全部止めたい→停止ボタンおすだけ • 全部のバッチ処理を俯瞰したい
→されてる! デメリット 複雑な依存関係を考慮できない 保守は自分でがんばる
まとめ • BIRのビジネスとシステムアーキテクチャ • 回答データの活用方法・Cloud Schedulerを使ったバッチ処理 18
タイムテーブル 時間 タイトル スピーカー 19:00 ~ 19:05 オープニング 司会 19:05
~ 19:20 BIRのアーキテクチャとデータ処理 滝安 純平 19:20 ~ 19:40 DatastoreからSpannerへのゼロダウンタイム移行 四方田 貫児 アンケートシステムのデータ可視化 木村 一統 19:40 ~ 19:50 質疑応答・クロージング
アンケートのご協力をお願いします ※BIRで作っているアンケートシステム( Tiger)です! 医療従事者でない方はめったに触る機会がないので、ぜひこの機会にどうぞ We’re hiring! エムスリーのエンジニア 採用サイトはこちら アンケートはこちら
※現在は終了 しています