Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
BIRのアーキテクチャと データ処理
Search
Jumpei Takiyasu
February 18, 2021
Technology
0
1k
BIRのアーキテクチャと データ処理
Jumpei Takiyasu
February 18, 2021
Tweet
Share
More Decks by Jumpei Takiyasu
See All by Jumpei Takiyasu
BIRのアーキテクチャと 技術選定
juntaki
0
710
ROSでSLAMラジコンをつくる
juntaki
0
3.3k
6足歩行ロボットをつくった
juntaki
0
640
GoでAPIサーバをはやくつくる
juntaki
26
12k
Undocumented!? firebase
juntaki
0
240
3Dプリンタと4足歩行プロトタイプ
juntaki
0
6.5k
アンケートの集計システムを作った
juntaki
0
3.3k
Goならわかる Linuxのメモリ管理
juntaki
13
6.1k
社内勉強会の管理ツール Sugoi Meetupをつくった
juntaki
0
770
Other Decks in Technology
See All in Technology
20250304_赤煉瓦倉庫_DeepSeek_Deep_Dive
hiouchiy
2
110
JavaにおけるNull非許容性
skrb
2
2.7k
急成長する企業で作った、エンジニアが輝ける制度/ 20250227 Rinto Ikenoue
shift_evolve
0
180
EMConf JP 2025 懇親会LT / EMConf JP 2025 social gathering
sugamasao
2
200
ABWG2024採択者が語るエンジニアとしての自分自身の見つけ方〜発信して、つながって、世界を広げていく〜
maimyyym
1
200
LINE NEWSにおけるバックエンド開発
lycorptech_jp
PRO
0
330
AI Agent時代なのでAWSのLLMs.txtが欲しい!
watany
3
340
クラウド食堂とは?
hiyanger
0
120
事業モメンタムを生み出すプロダクト開発
macchiitaka
0
100
Pwned Labsのすゝめ
ken5scal
2
530
日経のデータベース事業とElasticsearch
hinatades
PRO
0
260
ウォンテッドリーのデータパイプラインを支える ETL のための analytics, rds-exporter / analytics, rds-exporter for ETL to support Wantedly's data pipeline
unblee
0
140
Featured
See All Featured
Fashionably flexible responsive web design (full day workshop)
malarkey
406
66k
The Cult of Friendly URLs
andyhume
78
6.2k
How GitHub (no longer) Works
holman
314
140k
The Web Performance Landscape in 2024 [PerfNow 2024]
tammyeverts
4
440
What’s in a name? Adding method to the madness
productmarketing
PRO
22
3.3k
Fireside Chat
paigeccino
35
3.2k
YesSQL, Process and Tooling at Scale
rocio
172
14k
Cheating the UX When There Is Nothing More to Optimize - PixelPioneers
stephaniewalter
280
13k
Site-Speed That Sticks
csswizardry
4
410
Into the Great Unknown - MozCon
thekraken
35
1.6k
Scaling GitHub
holman
459
140k
Put a Button on it: Removing Barriers to Going Fast.
kastner
60
3.7k
Transcript
BIRのアーキテクチャと データ処理 Jumpei Takiyasu @juntaki M3, Inc.
自己紹介 滝安純平(@juntaki) BIRエンジニアチームリーダー兼BIRカンパニー執行役員 バックエンドとWebフロントエンドエンジニア、兼プロダクトマ ネージャをやっています。 もともと組み込みLinuxのカーネル開発をしていました。最近 はFlutterでなにか作っています。 好きな言語はGoʕ◔ϖ◔ʔ 2
今日話すこと • BIRのビジネスとシステムアーキテクチャ(再) • 回答データの活用方法・Cloud Schedulerを使ったバッチ処理 3
BIRのビジネスと システムアーキテクチャ 4
BIR - ビジネスインテリジェンス&リサーチ 医療従事者の会員向けアンケート(国内最大の医師パネル)をベースに、製薬 会社へのマーケティング支援を提供する事業を行っています。 5
アンケートページ
アンケートビジネスの流れ 1. アンケートを作る 2. 配信・督促をがんばる 3. データを整理する 4. データを可視化する アンケートを集める
データを活用できるよ うにする 7
アンケートシステムのアーキテクチャ 8
アンケートシステムのアーキテクチャ 1.アンケートを作る 2.配信・督促をがんばる 3.データを整理する 4. データを可視化する 9
Tableauとは データ可視化ツール • BigQueryやPostgreSQL、 Excelまで色々なデータに接 続可能 • データ整形、集計、可視化ま で、やりたいことは何でもでき る※すごいツール
※使いこなせば…!
Tableauの活用方法 1. 社内向け指標の可視化 a. アンケートの回答状況 b. 各種配信チャネルの流入状況 c. クラウド環境の課金状況 2.
納品物作成 a. クライアント向けダッシュボード b. データダウンロードツール
アンケートで扱うデータと格納先(概要) 配信に使うデータ • 配信ユーザID • アンケートID • ステータス 回答データ •
ユーザID • アンケートID • 回答内容 M3トップページ並のアクセス量 → Cloud Spanner 各アンケートシステムの 性能要件は一般的なWebアプリ → Cloud SQL / Aurora
可視化したいもの 内部的には… • 回答状況 • 各種KPI 納品物では… • 回答&設問 •
会員属性 配信システムの Spannerにある アンケートシステ ムのDB M3会員基盤 各所にあるデータを集めて可視化しなくては使えない 直接参照すると、可視化による負荷を各々考慮する必要があり設計難度が上がる BigQueryへ集約
バッチ処理 BigQueryにデータを集約させるための処理を Webアプリとは非同期に動かしたい • cronジョブ / SpringBatchなどフレームワークの機能 ◦ バッチ専用インスタンスが必要 ◦
アプリごとに作るので統一した管理が難しい • ワークフローエンジン(Digdag, Airflow, etc..) ◦ 依存関係がほぼ無いのでオーバースペック +失敗したときの復旧が面倒(前日の日次バッチ処理など …)
Cloud Schedulerをつかったバッチ処理 BIR独自の バッチ起動処理 他チームがDigdagから 使っていた処理を流用
バッチ処理起動用サーバ(bir-batch) YAMLファイルでエンドポイントを生成する超シンプル独自フレームワーク (Digdagも検討したが、BIRは処理間の依存がなかったので採用せず) • 指定されたFargateにパラメータを渡して起動(現在日付はクエリパラメータ) • 失敗を検知してリトライ&リトライ失敗で通知 - endpoint: /ibis/update_answer
image: 'ibis-container:latest' cmd: /work/run.sh cpu: 256 memory: 512 env: BQ_KEY: 'credential' PASSWORD: 'password' retryable: true 処理ごとに こんな感じの YAMLを書くだけ
この構成のメリット&デメリット メリット Fargateで都度コンテナを立ち上げるので、リソースを食い合って共倒れない Web APIになっているので、再実行が簡単(?date=20210220とすれば過去分も)Cloud Schedulerのコンソールが優秀 • DBメンテナンスでバッチ全部止めたい→停止ボタンおすだけ • 全部のバッチ処理を俯瞰したい
→されてる! デメリット 複雑な依存関係を考慮できない 保守は自分でがんばる
まとめ • BIRのビジネスとシステムアーキテクチャ • 回答データの活用方法・Cloud Schedulerを使ったバッチ処理 18
タイムテーブル 時間 タイトル スピーカー 19:00 ~ 19:05 オープニング 司会 19:05
~ 19:20 BIRのアーキテクチャとデータ処理 滝安 純平 19:20 ~ 19:40 DatastoreからSpannerへのゼロダウンタイム移行 四方田 貫児 アンケートシステムのデータ可視化 木村 一統 19:40 ~ 19:50 質疑応答・クロージング
アンケートのご協力をお願いします ※BIRで作っているアンケートシステム( Tiger)です! 医療従事者でない方はめったに触る機会がないので、ぜひこの機会にどうぞ We’re hiring! エムスリーのエンジニア 採用サイトはこちら アンケートはこちら
※現在は終了 しています