Upgrade to Pro — share decks privately, control downloads, hide ads and more …

BIRのアーキテクチャと データ処理

BIRのアーキテクチャと データ処理

De059f612e2f68589831e4bde0f15c83?s=128

Jumpei Takiyasu

February 18, 2021
Tweet

Transcript

  1. BIRのアーキテクチャと データ処理 Jumpei Takiyasu @juntaki M3, Inc.

  2. 自己紹介 滝安純平(@juntaki) BIRエンジニアチームリーダー兼BIRカンパニー執行役員 バックエンドとWebフロントエンドエンジニア、兼プロダクトマ ネージャをやっています。 もともと組み込みLinuxのカーネル開発をしていました。最近 はFlutterでなにか作っています。 好きな言語はGoʕ◔ϖ◔ʔ 2

  3. 今日話すこと • BIRのビジネスとシステムアーキテクチャ(再) • 回答データの活用方法・Cloud Schedulerを使ったバッチ処理 3

  4. BIRのビジネスと システムアーキテクチャ 4

  5. BIR - ビジネスインテリジェンス&リサーチ 医療従事者の会員向けアンケート(国内最大の医師パネル)をベースに、製薬 会社へのマーケティング支援を提供する事業を行っています。 5

  6. アンケートページ

  7. アンケートビジネスの流れ 1. アンケートを作る 2. 配信・督促をがんばる 3. データを整理する 4. データを可視化する アンケートを集める

    データを活用できるよ うにする 7
  8. アンケートシステムのアーキテクチャ 8

  9. アンケートシステムのアーキテクチャ 1.アンケートを作る 2.配信・督促をがんばる 3.データを整理する 4. データを可視化する 9

  10. Tableauとは データ可視化ツール • BigQueryやPostgreSQL、 Excelまで色々なデータに接 続可能 • データ整形、集計、可視化ま で、やりたいことは何でもでき る※すごいツール

    ※使いこなせば…!
  11. Tableauの活用方法 1. 社内向け指標の可視化 a. アンケートの回答状況 b. 各種配信チャネルの流入状況 c. クラウド環境の課金状況 2.

    納品物作成 a. クライアント向けダッシュボード b. データダウンロードツール
  12. アンケートで扱うデータと格納先(概要) 配信に使うデータ • 配信ユーザID • アンケートID • ステータス 回答データ •

    ユーザID • アンケートID • 回答内容 M3トップページ並のアクセス量 → Cloud Spanner 各アンケートシステムの 性能要件は一般的なWebアプリ → Cloud SQL / Aurora
  13. 可視化したいもの 内部的には… • 回答状況 • 各種KPI 納品物では… • 回答&設問 •

    会員属性 配信システムの Spannerにある アンケートシステ ムのDB M3会員基盤 各所にあるデータを集めて可視化しなくては使えない 直接参照すると、可視化による負荷を各々考慮する必要があり設計難度が上がる BigQueryへ集約
  14. バッチ処理 BigQueryにデータを集約させるための処理を Webアプリとは非同期に動かしたい • cronジョブ / SpringBatchなどフレームワークの機能 ◦ バッチ専用インスタンスが必要 ◦

    アプリごとに作るので統一した管理が難しい • ワークフローエンジン(Digdag, Airflow, etc..) ◦ 依存関係がほぼ無いのでオーバースペック +失敗したときの復旧が面倒(前日の日次バッチ処理など …)
  15. Cloud Schedulerをつかったバッチ処理 BIR独自の バッチ起動処理 他チームがDigdagから 使っていた処理を流用

  16. バッチ処理起動用サーバ(bir-batch) YAMLファイルでエンドポイントを生成する超シンプル独自フレームワーク (Digdagも検討したが、BIRは処理間の依存がなかったので採用せず) • 指定されたFargateにパラメータを渡して起動(現在日付はクエリパラメータ) • 失敗を検知してリトライ&リトライ失敗で通知 - endpoint: /ibis/update_answer

    image: 'ibis-container:latest' cmd: /work/run.sh cpu: 256 memory: 512 env: BQ_KEY: 'credential' PASSWORD: 'password' retryable: true 処理ごとに こんな感じの YAMLを書くだけ
  17. この構成のメリット&デメリット メリット Fargateで都度コンテナを立ち上げるので、リソースを食い合って共倒れない Web APIになっているので、再実行が簡単(?date=20210220とすれば過去分も)Cloud Schedulerのコンソールが優秀 • DBメンテナンスでバッチ全部止めたい→停止ボタンおすだけ • 全部のバッチ処理を俯瞰したい

    →されてる! デメリット 複雑な依存関係を考慮できない 保守は自分でがんばる
  18. まとめ • BIRのビジネスとシステムアーキテクチャ • 回答データの活用方法・Cloud Schedulerを使ったバッチ処理 18

  19. タイムテーブル 時間 タイトル スピーカー 19:00 ~ 19:05 オープニング 司会 19:05

    ~ 19:20 BIRのアーキテクチャとデータ処理 滝安 純平 19:20 ~ 19:40 DatastoreからSpannerへのゼロダウンタイム移行 四方田 貫児 アンケートシステムのデータ可視化 木村 一統 19:40 ~ 19:50 質疑応答・クロージング
  20. アンケートのご協力をお願いします ※BIRで作っているアンケートシステム( Tiger)です!  医療従事者でない方はめったに触る機会がないので、ぜひこの機会にどうぞ We’re hiring! 
 エムスリーのエンジニア 採用サイトはこちら アンケートはこちら

    ※現在は終了 しています