Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
簡単な機械学習 / Python 14
Search
kaityo256
PRO
January 14, 2020
Education
4
1.9k
簡単な機械学習 / Python 14
プログラム基礎同演習 14
kaityo256
PRO
January 14, 2020
Tweet
Share
More Decks by kaityo256
See All by kaityo256
デバッグの話 / Debugging for Beginners
kaityo256
PRO
9
1k
ビット演算の話 / Let's play with bit operations
kaityo256
PRO
4
280
GNU Makeの使い方 / How to use GNU Make
kaityo256
PRO
15
5k
制限ボルツマンマシンの話 / Introduction of RBM
kaityo256
PRO
3
890
論文の読み方 / How to survey
kaityo256
PRO
220
160k
リンゴゲームと貧富の差 / Origin of the disparity of wealth
kaityo256
PRO
13
14k
渡辺研Slackの使い方 / Slack Local Rule
kaityo256
PRO
9
8.6k
時間の矢について / Time's arrow
kaityo256
PRO
12
17k
t-SNEをざっくりと理解 / Overview of t-SNE
kaityo256
PRO
2
1.4k
Other Decks in Education
See All in Education
Ch2_-_Partie_1.pdf
bernhardsvt
0
120
Utiliser Linkedin pour améliorer son personal branding
martine
0
100
AWS All Certが伝える 新AWS認定試験取得のコツ (Machine Learning Engineer - Associate)
nnydtmg
1
700
脳卒中になってしまった さあ、どうする
japanstrokeassociation
0
1.1k
Repaso electricidade e electrónica
irocho
0
210
2409_CompanyInfo_Hanji_published.pdf
yosukemurata
0
640
HCI Research Methods - Lecture 7 - Human-Computer Interaction (1023841ANR)
signer
PRO
0
750
Образцы вооружения и техники ВС РФ
obzr
0
110
自己紹介 / who-am-i
yasulab
PRO
2
4.3k
Introduction - Lecture 1 - Human-Computer Interaction (1023841ANR)
signer
PRO
0
1.8k
Adobe Analytics入門講座【株式会社ニジボックス】
nbkouhou
0
23k
Ch2_-_Partie_2.pdf
bernhardsvt
0
110
Featured
See All Featured
Music & Morning Musume
bryan
46
6.2k
Become a Pro
speakerdeck
PRO
26
5k
Side Projects
sachag
452
42k
How to Think Like a Performance Engineer
csswizardry
22
1.2k
Performance Is Good for Brains [We Love Speed 2024]
tammyeverts
6
520
Agile that works and the tools we love
rasmusluckow
328
21k
Fireside Chat
paigeccino
34
3.1k
ReactJS: Keep Simple. Everything can be a component!
pedronauck
665
120k
Fantastic passwords and where to find them - at NoRuKo
philnash
50
2.9k
Build your cross-platform service in a week with App Engine
jlugia
229
18k
The Cost Of JavaScript in 2023
addyosmani
45
7k
4 Signs Your Business is Dying
shpigford
181
21k
Transcript
1 簡単な機械学習 プログラミング基礎同演習 慶應義塾大学理工学部物理情報工学科 渡辺 2019/1/14
2 機械学習 ・機械学習の基礎 ・過学習 ・GAN
3 惑星の動きを観測する (大量のデータ) Ԧ = Ԧ モデル化 法則の抽出 (情報圧縮)
4 彗星の動きを予測できる (モデルが正しければ) Ԧ = Ԧ モデル計算 法則からスタート
5 惑星の動きを観測する (大量のデータ) なんらかのモデルを作る 彗星の動きを予測できる (モデルが正しければ) 情報圧縮
6 教師あり学習 (Supervised Learning) 教師なし学習 (Unsupervised Learning) 強化学習(Reinforcement Learning) 「問題と解答のセット」を与えて学習させる方法
・画像認識、家賃推定など データだけ与えて、データの分類を行う方法 ・売上データを解析し、一緒に売れそうな商品を推薦する等 エージェントの行動に適切に報酬を与えることで 最適な行動を学習させる方法 ・チェスや囲碁の思考ルーチンなど ネコ イヌ
7 分類問題 入力に対して「ラベル」を推定する問題 ネコ イヌ 回帰問題 入力に対して「値」を推定する問題 16万円 写真に写るものがネコか イヌか判定する
築年数、駅までの距離、 周辺施設などから家賃を 推定する 築年数: X年 駅から: 徒歩Y分 広さ: Z平米 近所にコンビニあり
8 荷重 x 伸び y バネの伸びと荷重の関係 とりあえずいろんな荷重に対して、伸びを測定してみる データセット 伸び 荷重
9 0 荷重 伸び 観測値 先程のデータセットをグラフにしてみる の関係が予想される 最小二乗法でaを決める
10 何が起きたか? 多数のデータセットから、モデルが決まった 情報が圧縮された このモデルは正しいか? どうすれば正しいと検証できるか?
11 データセット 訓練データ テストデータ モデルを決める モデルの予測性能を確認する データを2つのグループに分ける
12 0 入力 出力 訓練誤差 0 入力 出力 汎化誤差 訓練誤差
汎化誤差 訓練データとモデルとの誤差 テストデータとモデルとの誤差 訓練誤差が小さい=学習できている 汎化誤差が小さい=モデルが予測能力を持つ
13 0 出力 入力 0 出力 入力 訓練データ テストデータ 訓練データは完璧に再現するが…
テストデータが全然合わない 0 出力 入力 実はこんな関数だった 訓練データに最適化され過ぎ、 予測性能を失うことを 過学習(Over fitting)と呼ぶ
14 • 機械学習とは一種の情報圧縮 • 学習とは「訓練誤差」を減らす作業 • 過学習とは「訓練データ」に最適化 され過ぎ、未知のデータへの予測能 力を失うこと
15 偽造者 (Generator) 博物館 (Real Dataset) 鑑定者 (Discriminator) 提供されたデータが 本物か偽物か見分ける
ニセのデータを生成 本物のデータを提供