Lock in $30 Savings on PRO—Offer Ends Soon! ⏳
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
簡単な機械学習 / Python 14
Search
kaityo256
PRO
January 14, 2020
Education
4
1.9k
簡単な機械学習 / Python 14
プログラム基礎同演習 14
kaityo256
PRO
January 14, 2020
Tweet
Share
More Decks by kaityo256
See All by kaityo256
卒論の書き方 / Happy Writing
kaityo256
PRO
50
27k
生成AIとの付き合い方 / Generative AI and us
kaityo256
PRO
11
6.6k
モンテカルロ法(3) 発展的アルゴリズム / Simulation 04
kaityo256
PRO
10
1.6k
UMAPをざっくりと理解 / Overview of UMAP
kaityo256
PRO
9
3.7k
SSH公開鍵認証による接続 / Connecting with SSH Public Key Authentication
kaityo256
PRO
7
700
論文紹介のやり方 / How to review
kaityo256
PRO
17
88k
デバッグの話 / Debugging for Beginners
kaityo256
PRO
18
1.8k
ビット演算の話 / Let's play with bit operations
kaityo256
PRO
8
670
GNU Makeの使い方 / How to use GNU Make
kaityo256
PRO
16
5.5k
Other Decks in Education
See All in Education
ロータリー国際大会について~国際大会に参加しよう~:古賀 真由美 会員(2720 Japan O.K. ロータリーEクラブ・(有)誠邦産業 取締役)
2720japanoke
1
740
【ZEPメタバース校舎操作ガイド】
ainischool
0
690
KBS新事業創造体験2025_科目説明会
yasuchikawakayama
0
150
Презентация "Знаю Россию"
spilsart
0
380
1014
cbtlibrary
0
500
くまのココロンともぐらのロジ
frievea
0
120
焦りと不安を、技術力に変える方法 - 新卒iOSエンジニアの失敗談と成長のフレームワーク
hypebeans
1
610
Портфолио - Шынар Ауелбекова
shynar
0
150
1202
cbtlibrary
0
150
附属科学技術高等学校の概要|Science Tokyo(東京科学大学)
sciencetokyo
PRO
0
2.9k
2025年度伊藤正彦ゼミ紹介
imash
0
140
中央教育審議会 教育課程企画特別部会 情報・技術ワーキンググループに向けた提言 ー次期学習指導要領での情報活用能力の抜本的向上に向けてー
codeforeveryone
0
460
Featured
See All Featured
Code Review Best Practice
trishagee
74
19k
Producing Creativity
orderedlist
PRO
348
40k
Embracing the Ebb and Flow
colly
88
4.9k
The Straight Up "How To Draw Better" Workshop
denniskardys
239
140k
Build The Right Thing And Hit Your Dates
maggiecrowley
38
3k
The Illustrated Children's Guide to Kubernetes
chrisshort
51
51k
The Cost Of JavaScript in 2023
addyosmani
55
9.4k
The Power of CSS Pseudo Elements
geoffreycrofte
80
6.1k
Practical Orchestrator
shlominoach
190
11k
Statistics for Hackers
jakevdp
799
230k
Designing Dashboards & Data Visualisations in Web Apps
destraynor
231
54k
Learning to Love Humans: Emotional Interface Design
aarron
274
41k
Transcript
1 簡単な機械学習 プログラミング基礎同演習 慶應義塾大学理工学部物理情報工学科 渡辺 2019/1/14
2 機械学習 ・機械学習の基礎 ・過学習 ・GAN
3 惑星の動きを観測する (大量のデータ) Ԧ = Ԧ モデル化 法則の抽出 (情報圧縮)
4 彗星の動きを予測できる (モデルが正しければ) Ԧ = Ԧ モデル計算 法則からスタート
5 惑星の動きを観測する (大量のデータ) なんらかのモデルを作る 彗星の動きを予測できる (モデルが正しければ) 情報圧縮
6 教師あり学習 (Supervised Learning) 教師なし学習 (Unsupervised Learning) 強化学習(Reinforcement Learning) 「問題と解答のセット」を与えて学習させる方法
・画像認識、家賃推定など データだけ与えて、データの分類を行う方法 ・売上データを解析し、一緒に売れそうな商品を推薦する等 エージェントの行動に適切に報酬を与えることで 最適な行動を学習させる方法 ・チェスや囲碁の思考ルーチンなど ネコ イヌ
7 分類問題 入力に対して「ラベル」を推定する問題 ネコ イヌ 回帰問題 入力に対して「値」を推定する問題 16万円 写真に写るものがネコか イヌか判定する
築年数、駅までの距離、 周辺施設などから家賃を 推定する 築年数: X年 駅から: 徒歩Y分 広さ: Z平米 近所にコンビニあり
8 荷重 x 伸び y バネの伸びと荷重の関係 とりあえずいろんな荷重に対して、伸びを測定してみる データセット 伸び 荷重
9 0 荷重 伸び 観測値 先程のデータセットをグラフにしてみる の関係が予想される 最小二乗法でaを決める
10 何が起きたか? 多数のデータセットから、モデルが決まった 情報が圧縮された このモデルは正しいか? どうすれば正しいと検証できるか?
11 データセット 訓練データ テストデータ モデルを決める モデルの予測性能を確認する データを2つのグループに分ける
12 0 入力 出力 訓練誤差 0 入力 出力 汎化誤差 訓練誤差
汎化誤差 訓練データとモデルとの誤差 テストデータとモデルとの誤差 訓練誤差が小さい=学習できている 汎化誤差が小さい=モデルが予測能力を持つ
13 0 出力 入力 0 出力 入力 訓練データ テストデータ 訓練データは完璧に再現するが…
テストデータが全然合わない 0 出力 入力 実はこんな関数だった 訓練データに最適化され過ぎ、 予測性能を失うことを 過学習(Over fitting)と呼ぶ
14 • 機械学習とは一種の情報圧縮 • 学習とは「訓練誤差」を減らす作業 • 過学習とは「訓練データ」に最適化 され過ぎ、未知のデータへの予測能 力を失うこと
15 偽造者 (Generator) 博物館 (Real Dataset) 鑑定者 (Discriminator) 提供されたデータが 本物か偽物か見分ける
ニセのデータを生成 本物のデータを提供