Upgrade to PRO for Only $50/Year—Limited-Time Offer! 🔥
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
B3_Seminar_04
Search
kakubari
February 16, 2017
Technology
0
72
B3_Seminar_04
長岡技術科学大学 自然言語処理研究室
角張竜晴
kakubari
February 16, 2017
Tweet
Share
More Decks by kakubari
See All by kakubari
動詞クエリの語間の関係性に基づくクエリマイニング
kakubari
0
110
Neural Modeling of Multi-Predicate Interactions for Japanese Predicate Argument Structure Analysis
kakubari
1
170
Leveraging Crowdsourcing for Paraphrase Recognition
kakubari
0
88
Automatically Acquired Lexical Knowledge Improves Japanese Joint Morphological and Dependency Analysis
kakubari
0
100
Labeling the Semantic Roles of Commas
kakubari
0
83
Integrating Case Frame into Japanese to Chinese Hierarchical Phrase-based Translation Model
kakubari
0
120
Improving Chinese Semantic Role Labelingusing High-quality Surface and Deep Case Frames
kakubari
0
91
Exploring Verb Frames for Sentence Simplification in Hindi
kakubari
0
130
述語項構造と照応関係のアノテーション
kakubari
0
240
Other Decks in Technology
See All in Technology
文字列の並び順 / Unicode Collation
tmtms
3
620
20251222_サンフランシスコサバイバル術
ponponmikankan
1
110
特別捜査官等研修会
nomizone
0
370
AlmaLinux + KVM + Cockpit で始めるお手軽仮想化基盤 ~ 開発環境などでの利用を想定して ~
koedoyoshida
0
130
Connection-based OAuthから学ぶOAuth for AI Agents
flatt_security
0
180
AWS Security Agentの紹介/introducing-aws-security-agent
tomoki10
0
350
AIプラットフォームにおけるMLflowの利用について
lycorptech_jp
PRO
1
180
業務のトイルをバスターせよ 〜AI時代の生存戦略〜
staka121
PRO
2
230
JEDAI認定プログラム JEDAI Order 2026 エントリーのご案内 / JEDAI Order 2026 Entry
databricksjapan
0
150
【ServiceNow SNUG Meetup LT deck】WorkFlow Editorの廃止と Flow Designerへの移行戦略
niwato
0
110
年間40件以上の登壇を続けて見えた「本当の発信力」/ 20251213 Masaki Okuda
shift_evolve
PRO
1
150
日本Rubyの会: これまでとこれから
snoozer05
PRO
5
210
Featured
See All Featured
We Are The Robots
honzajavorek
0
110
A Modern Web Designer's Workflow
chriscoyier
698
190k
The #1 spot is gone: here's how to win anyway
tamaranovitovic
1
860
How GitHub (no longer) Works
holman
316
140k
Leveraging LLMs for student feedback in introductory data science courses - posit::conf(2025)
minecr
0
85
Google's AI Overviews - The New Search
badams
0
860
SEO in 2025: How to Prepare for the Future of Search
ipullrank
3
3.3k
職位にかかわらず全員がリーダーシップを発揮するチーム作り / Building a team where everyone can demonstrate leadership regardless of position
madoxten
47
33k
Creating an realtime collaboration tool: Agile Flush - .NET Oxford
marcduiker
35
2.3k
ラッコキーワード サービス紹介資料
rakko
0
1.7M
Neural Spatial Audio Processing for Sound Field Analysis and Control
skoyamalab
0
130
Mobile First: as difficult as doing things right
swwweet
225
10k
Transcript
Ԭٕज़Պֶେֶ ిؾిࢠใֶ՝ఔ ֶ෦ɹ֯ுཽ ࣗવݴޠݚڀࣨ ɹ#̏θϛ ʙୈճʙ ϏοΫσʔλղੳೖᶄ
目次 ˔౷ܭͷجૅ ˔֬ີؔɾྦྷੵؔ
統計の基礎 ˔ఆৗͱ ɹ࣌ܥྻղੳͰඞཁͱͳͬͯ͘Δ֓೦ ˔࣌ܥྻͱ ɹ࣌ؒͷྲྀΕͱڞʹ؍ଌྔͷมԽ͕ه͞Εͨσʔλ ɹྫ͑ɾɾɾ ɹɾҝସגͷՁ֨ ɹɾಉ͡ॴͷؾԹؾѹ
統計の基礎 ͋Δ࣌ࠁ̓ʹ؍ଌ͞ΕͨΛ͇ ̓ Ͱද͢ɻ ࣌ܥྻ͕ఆৗͰ͋ΔͨΊͷ݅ɾɾɾ ɾฏۉ͕࣌ؒʹΑΒͣҰఆɹ ɾࢄ͕࣌ؒʹΑΒͣҰఆ ɾࣗݾڞࢄ͕࣌ؒࠩͷؔ ͜͜ͰɺЖ
Мఆɺ̺࣌ؒࠩΛද͢ɻ E[x(t)] = µ E[x(t)− µ]2 = σ 2 E[(x(t)−µ)(x(t − k)−µ)]= C(k)
統計の基礎 ˔౷ܭղੳΛߦ͏্Ͱఆৗੑɺඇৗʹॏཁ ղੳΛ͢Δσʔλͷൣғ͕มΘͬͯಉ͡౷ܭ݁Ռ ͕ಘΒΕΔΛ͍ࣔࠦͯ͠Δɻ ͭ·Γɺ౷ܭ݁ՌʹൣғબʹΑΔۮવੑ͕བྷΉ͜ͱ Λഉআͯ͘͠ΕΔɻ
統計の基礎 ˔౷ܭղੳͱ ɹશମ͔Βൈ͖ग़ͨ͠Ұ෦ΛݟͯɺશମΛΔ ྫ͑ɾɾɾʮຊதͷখֶੜͷମॏΛௐࠪ͢Δʯ ɹௐࠪରɿຊશࠃͷখֶੜશһ ௐࠪͷରͱͳΔूஂΛूஂͱ͍͏ɻ ཧͱͯ͠ɺूஂΛͯ͢ௐࠪ͢ΕΑ͍ɻ
શௐࠪ
統計の基礎 ͕ͩɺूஂ͕େ͖͘ɺௐ͕ࠪࠔͰ͋Δɻ Ὃ ूஂ͔Β̽ݸΛൈ͖ग़ͯ͠؍ଌ͠ɺ ͔ͦ͜ΒશମͷಛΛਪఆ͢Δɻ
؍ଌͷूஂඪຊͱݺͿɻ ಛʹɺཁૉ͕̽ͷ߹େ͖̽͞ͷඪຊͱݺͿɻ
統計の基礎 ʙ౷ܭղੳΛߦ͏্Ͱॏཁͳ๏ଇʙ ˔େͷ๏ଇ ʮ͋Δूஂ͔Βແ࡞ҝநग़͞ΕͨඪຊฏۉඪຊͷαΠζΛ େ͖͘͢Δͱਅͷฏۉʢूஂͷฏۉʣʹۙͮ͘ʯ ˔த৺ۃݶఆཧ ʮฏۉЖɺࢄМΛ࣋ͭҙͷʹै͏ूஂ͔Βɺ େ͖̽͞ͷඪຊΛநग़ͨ࣌͠ɺඪຊฏۉ̚<͇>ͷɺ͕̽े େ͖͚ΕฏۉЖɺࢄМ̽ͷਖ਼نʹۙͮ͘ʯ
˔֬ີؔ ɹ֬มʢཧྔʣ̭͕ඍখͳ۠ؒ ʹͦͷΛͱΔ֬ʢ֬ີʣΛ༩͑Δؔ ɹ֬ม̭͕ɹɹɹɹɹͱͳΔ֬Λ ͱ͢Δͱɺ ֬ਖ਼Ͱ͋Γɺͦͷ͕̍Ͱ͋Δ͜ͱ͔Βɺ f
(x) x < X < x +δx P(a < X < b) = f (x)dx a b ∫ a < X < b P(a < X < b) f (x)dx −∞ +∞ ∫ =1 f (x) ≥ 0
確率密度関数・累積分布関数 ˔ώετάϥϜ ɹ۠ؒͷදΛԣ࣠ʹɺͦͷ۠ؒͷΛॎ࣠ʹͱͬͯࢹ֮Խ ͨ͠ͷ ֬มͷಛ͕Θ͔Δ ɹɾͲͷ͘Β͍͕ΓΛ͔࣋ͭ ɹɾҰ൪ଟ͍Կ͔
ͳͲʜ ώετάϥϜͷ֓ܗΛ͑ΔͨΊʹن֨ԽΛߦ͏ɻ ɹɾΛσʔλͰׂΓɺ֤۠ؒͰͷ֬Λܭࢉ͢Δ ɹɾ֤۠ؒͷ֬Λ۠ؒͷ෯ͰׂΓɺ֬ີΛܭࢉ͢Δ ɹɾԣ࣠ʹ֤۠ؒͷදɺॎ࣠ʹ֬ີΛϓϩοτ͢Δ
確率密度関数・累積分布関数 ˔ྦྷੵؔ ɹ֬มͷ͕͇ΑΓେ͖͘ͳΔ֬Λ༩͑Δؔ ֬ີؔΛ༻͍ͯɺ ͱఆٛ͞ΕΔؔ'Λ֬ม̭ͷྦྷੵؔͱ͍ ͏ɻ F(x)
= P(X > x) = f ( ! x )d ! x x ∞ ∫
確率密度関数・累積分布関数 ˔ར ۠ؒΛ۠Δඞཁ͕ͳ͍ͨΊɺσʔλ͕ൺֱతগͳ͘ ͯ͋Δఔ͖Ε͍ʹඳ͚Δɻ σʔλͱྦྷੵؔ̍ର̍ʹରԠ͢Δɻ ˔άϥϑͷॻ͖ํ ɹ֬ີؔʢੵʣΛܦ༝͢Δํ๏ɺݫີͳ݁Ռ
Λಘ͍ͨ߹ʹ΄ͱΜͲΘΕͳ͍ɻ࣮ࡍɺσʔλͷ ιʔτͰٻΊΔɻ ᾇ̣ݸͷσʔλΛେ͖͍ॱʹฒΔ ᾈঢॱʹσʔλʹରͯ͠ɺ͔̍Β/·ͰॱҐ3Λ͚ͭΔ ᾉσʔλͷΛԣ࣠ʹɺ3/Λॎ࣠ʹϓϩοτ͢Δ
参考文献 ˔ߴ҆ඒࠤࢠฤஶɺాଜޫଠɾࡾӜߤஶɺ ɹʮֶੜɾٕज़ऀͷͨΊͷϏοΫσʔλղੳೖʯ ʢୈ̍ষʙୈ̏ষʣɺ ɹגࣜձࣾຊධࣾɺ݄