Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
B3_Seminar_04
Search
kakubari
February 16, 2017
Technology
0
70
B3_Seminar_04
長岡技術科学大学 自然言語処理研究室
角張竜晴
kakubari
February 16, 2017
Tweet
Share
More Decks by kakubari
See All by kakubari
動詞クエリの語間の関係性に基づくクエリマイニング
kakubari
0
110
Neural Modeling of Multi-Predicate Interactions for Japanese Predicate Argument Structure Analysis
kakubari
1
150
Leveraging Crowdsourcing for Paraphrase Recognition
kakubari
0
74
Automatically Acquired Lexical Knowledge Improves Japanese Joint Morphological and Dependency Analysis
kakubari
0
99
Labeling the Semantic Roles of Commas
kakubari
0
67
Integrating Case Frame into Japanese to Chinese Hierarchical Phrase-based Translation Model
kakubari
0
110
Improving Chinese Semantic Role Labelingusing High-quality Surface and Deep Case Frames
kakubari
0
86
Exploring Verb Frames for Sentence Simplification in Hindi
kakubari
0
120
述語項構造と照応関係のアノテーション
kakubari
0
220
Other Decks in Technology
See All in Technology
PostgreSQL 18 cancel request key長の変更とRailsへの関連
yahonda
0
120
Кто отправит outbox? Валентин Удальцов, автор канала Пых
lamodatech
0
340
AWS Summit Japan 2025 Community Stage - App workflow automation by AWS Step Functions
matsuihidetoshi
1
270
Lambda Web Adapterについて自分なりに理解してみた
smt7174
3
110
Observability infrastructure behind the trillion-messages scale Kafka platform
lycorptech_jp
PRO
0
140
解析の定理証明実践@Lean 4
dec9ue
0
180
データプラットフォーム技術におけるメダリオンアーキテクチャという考え方/DataPlatformWithMedallionArchitecture
smdmts
5
630
Amazon ECS & AWS Fargate 運用アーキテクチャ2025 / Amazon ECS and AWS Fargate Ops Architecture 2025
iselegant
16
5.5k
急成長を支える基盤作り〜地道な改善からコツコツと〜 #cre_meetup
stefafafan
0
120
2年でここまで成長!AWSで育てたAI Slack botの軌跡
iwamot
PRO
4
710
地図も、未来も、オープンに。 〜OSGeo.JPとFOSS4Gのご紹介〜
wata909
0
110
生成AIでwebアプリケーションを作ってみた
tajimon
2
150
Featured
See All Featured
Bash Introduction
62gerente
614
210k
Performance Is Good for Brains [We Love Speed 2024]
tammyeverts
10
930
A Tale of Four Properties
chriscoyier
160
23k
How to Ace a Technical Interview
jacobian
277
23k
YesSQL, Process and Tooling at Scale
rocio
173
14k
Balancing Empowerment & Direction
lara
1
370
The Straight Up "How To Draw Better" Workshop
denniskardys
234
140k
Fireside Chat
paigeccino
37
3.5k
Art, The Web, and Tiny UX
lynnandtonic
299
21k
The Web Performance Landscape in 2024 [PerfNow 2024]
tammyeverts
8
670
Imperfection Machines: The Place of Print at Facebook
scottboms
267
13k
Fight the Zombie Pattern Library - RWD Summit 2016
marcelosomers
233
17k
Transcript
Ԭٕज़Պֶେֶ ిؾిࢠใֶ՝ఔ ֶ෦ɹ֯ுཽ ࣗવݴޠݚڀࣨ ɹ#̏θϛ ʙୈճʙ ϏοΫσʔλղੳೖᶄ
目次 ˔౷ܭͷجૅ ˔֬ີؔɾྦྷੵؔ
統計の基礎 ˔ఆৗͱ ɹ࣌ܥྻղੳͰඞཁͱͳͬͯ͘Δ֓೦ ˔࣌ܥྻͱ ɹ࣌ؒͷྲྀΕͱڞʹ؍ଌྔͷมԽ͕ه͞Εͨσʔλ ɹྫ͑ɾɾɾ ɹɾҝସגͷՁ֨ ɹɾಉ͡ॴͷؾԹؾѹ
統計の基礎 ͋Δ࣌ࠁ̓ʹ؍ଌ͞ΕͨΛ͇ ̓ Ͱද͢ɻ ࣌ܥྻ͕ఆৗͰ͋ΔͨΊͷ݅ɾɾɾ ɾฏۉ͕࣌ؒʹΑΒͣҰఆɹ ɾࢄ͕࣌ؒʹΑΒͣҰఆ ɾࣗݾڞࢄ͕࣌ؒࠩͷؔ ͜͜ͰɺЖ
Мఆɺ̺࣌ؒࠩΛද͢ɻ E[x(t)] = µ E[x(t)− µ]2 = σ 2 E[(x(t)−µ)(x(t − k)−µ)]= C(k)
統計の基礎 ˔౷ܭղੳΛߦ͏্Ͱఆৗੑɺඇৗʹॏཁ ղੳΛ͢Δσʔλͷൣғ͕มΘͬͯಉ͡౷ܭ݁Ռ ͕ಘΒΕΔΛ͍ࣔࠦͯ͠Δɻ ͭ·Γɺ౷ܭ݁ՌʹൣғબʹΑΔۮવੑ͕བྷΉ͜ͱ Λഉআͯ͘͠ΕΔɻ
統計の基礎 ˔౷ܭղੳͱ ɹશମ͔Βൈ͖ग़ͨ͠Ұ෦ΛݟͯɺશମΛΔ ྫ͑ɾɾɾʮຊதͷখֶੜͷମॏΛௐࠪ͢Δʯ ɹௐࠪରɿຊશࠃͷখֶੜશһ ௐࠪͷରͱͳΔूஂΛूஂͱ͍͏ɻ ཧͱͯ͠ɺूஂΛͯ͢ௐࠪ͢ΕΑ͍ɻ
શௐࠪ
統計の基礎 ͕ͩɺूஂ͕େ͖͘ɺௐ͕ࠪࠔͰ͋Δɻ Ὃ ूஂ͔Β̽ݸΛൈ͖ग़ͯ͠؍ଌ͠ɺ ͔ͦ͜ΒશମͷಛΛਪఆ͢Δɻ
؍ଌͷूஂඪຊͱݺͿɻ ಛʹɺཁૉ͕̽ͷ߹େ͖̽͞ͷඪຊͱݺͿɻ
統計の基礎 ʙ౷ܭղੳΛߦ͏্Ͱॏཁͳ๏ଇʙ ˔େͷ๏ଇ ʮ͋Δूஂ͔Βແ࡞ҝநग़͞ΕͨඪຊฏۉඪຊͷαΠζΛ େ͖͘͢Δͱਅͷฏۉʢूஂͷฏۉʣʹۙͮ͘ʯ ˔த৺ۃݶఆཧ ʮฏۉЖɺࢄМΛ࣋ͭҙͷʹै͏ूஂ͔Βɺ େ͖̽͞ͷඪຊΛநग़ͨ࣌͠ɺඪຊฏۉ̚<͇>ͷɺ͕̽े େ͖͚ΕฏۉЖɺࢄМ̽ͷਖ਼نʹۙͮ͘ʯ
˔֬ີؔ ɹ֬มʢཧྔʣ̭͕ඍখͳ۠ؒ ʹͦͷΛͱΔ֬ʢ֬ີʣΛ༩͑Δؔ ɹ֬ม̭͕ɹɹɹɹɹͱͳΔ֬Λ ͱ͢Δͱɺ ֬ਖ਼Ͱ͋Γɺͦͷ͕̍Ͱ͋Δ͜ͱ͔Βɺ f
(x) x < X < x +δx P(a < X < b) = f (x)dx a b ∫ a < X < b P(a < X < b) f (x)dx −∞ +∞ ∫ =1 f (x) ≥ 0
確率密度関数・累積分布関数 ˔ώετάϥϜ ɹ۠ؒͷදΛԣ࣠ʹɺͦͷ۠ؒͷΛॎ࣠ʹͱͬͯࢹ֮Խ ͨ͠ͷ ֬มͷಛ͕Θ͔Δ ɹɾͲͷ͘Β͍͕ΓΛ͔࣋ͭ ɹɾҰ൪ଟ͍Կ͔
ͳͲʜ ώετάϥϜͷ֓ܗΛ͑ΔͨΊʹن֨ԽΛߦ͏ɻ ɹɾΛσʔλͰׂΓɺ֤۠ؒͰͷ֬Λܭࢉ͢Δ ɹɾ֤۠ؒͷ֬Λ۠ؒͷ෯ͰׂΓɺ֬ີΛܭࢉ͢Δ ɹɾԣ࣠ʹ֤۠ؒͷදɺॎ࣠ʹ֬ີΛϓϩοτ͢Δ
確率密度関数・累積分布関数 ˔ྦྷੵؔ ɹ֬มͷ͕͇ΑΓେ͖͘ͳΔ֬Λ༩͑Δؔ ֬ີؔΛ༻͍ͯɺ ͱఆٛ͞ΕΔؔ'Λ֬ม̭ͷྦྷੵؔͱ͍ ͏ɻ F(x)
= P(X > x) = f ( ! x )d ! x x ∞ ∫
確率密度関数・累積分布関数 ˔ར ۠ؒΛ۠Δඞཁ͕ͳ͍ͨΊɺσʔλ͕ൺֱతগͳ͘ ͯ͋Δఔ͖Ε͍ʹඳ͚Δɻ σʔλͱྦྷੵؔ̍ର̍ʹରԠ͢Δɻ ˔άϥϑͷॻ͖ํ ɹ֬ີؔʢੵʣΛܦ༝͢Δํ๏ɺݫີͳ݁Ռ
Λಘ͍ͨ߹ʹ΄ͱΜͲΘΕͳ͍ɻ࣮ࡍɺσʔλͷ ιʔτͰٻΊΔɻ ᾇ̣ݸͷσʔλΛେ͖͍ॱʹฒΔ ᾈঢॱʹσʔλʹରͯ͠ɺ͔̍Β/·ͰॱҐ3Λ͚ͭΔ ᾉσʔλͷΛԣ࣠ʹɺ3/Λॎ࣠ʹϓϩοτ͢Δ
参考文献 ˔ߴ҆ඒࠤࢠฤஶɺాଜޫଠɾࡾӜߤஶɺ ɹʮֶੜɾٕज़ऀͷͨΊͷϏοΫσʔλղੳೖʯ ʢୈ̍ষʙୈ̏ষʣɺ ɹגࣜձࣾຊධࣾɺ݄