$30 off During Our Annual Pro Sale. View Details »
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
B3_Seminar_04
Search
kakubari
February 16, 2017
Technology
0
72
B3_Seminar_04
長岡技術科学大学 自然言語処理研究室
角張竜晴
kakubari
February 16, 2017
Tweet
Share
More Decks by kakubari
See All by kakubari
動詞クエリの語間の関係性に基づくクエリマイニング
kakubari
0
110
Neural Modeling of Multi-Predicate Interactions for Japanese Predicate Argument Structure Analysis
kakubari
1
170
Leveraging Crowdsourcing for Paraphrase Recognition
kakubari
0
86
Automatically Acquired Lexical Knowledge Improves Japanese Joint Morphological and Dependency Analysis
kakubari
0
100
Labeling the Semantic Roles of Commas
kakubari
0
82
Integrating Case Frame into Japanese to Chinese Hierarchical Phrase-based Translation Model
kakubari
0
120
Improving Chinese Semantic Role Labelingusing High-quality Surface and Deep Case Frames
kakubari
0
91
Exploring Verb Frames for Sentence Simplification in Hindi
kakubari
0
130
述語項構造と照応関係のアノテーション
kakubari
0
240
Other Decks in Technology
See All in Technology
20251127 BigQueryリモート関数で作る、お手軽AIバッチ実行環境
daimatz
0
400
MAP-7thplaceSolution
yukichi0403
2
230
MS Ignite 2025で発表されたFoundry IQをRecap
satodayo
2
200
研究開発部メンバーの働き⽅ / Sansan R&D Profile
sansan33
PRO
3
21k
プラットフォームエンジニアリングとは何であり、なぜプラットフォームエンジニアリングなのか
doublemarket
1
510
ブラウザ拡張のセキュリティの話 / Browser Extension Security
flatt_security
0
240
Master Dataグループ紹介資料
sansan33
PRO
1
4k
Kill the Vibe?Architecture in the age of AI
stoth
1
150
MySQL AIとMySQL Studioを使ってみよう
ikomachi226
0
130
Modern Data Stack大好きマンが語るSnowflakeの魅力
sagara
0
220
AIにおける自由の追求
shujisado
2
420
Pandocでmd→pptx便利すぎワロタwww
meow_noisy
2
1.1k
Featured
See All Featured
No one is an island. Learnings from fostering a developers community.
thoeni
21
3.5k
We Have a Design System, Now What?
morganepeng
54
7.9k
KATA
mclloyd
PRO
32
15k
Mobile First: as difficult as doing things right
swwweet
225
10k
The Straight Up "How To Draw Better" Workshop
denniskardys
239
140k
The Art of Programming - Codeland 2020
erikaheidi
56
14k
Imperfection Machines: The Place of Print at Facebook
scottboms
269
13k
Visualizing Your Data: Incorporating Mongo into Loggly Infrastructure
mongodb
48
9.8k
The Cult of Friendly URLs
andyhume
79
6.7k
Save Time (by Creating Custom Rails Generators)
garrettdimon
PRO
32
1.8k
How to train your dragon (web standard)
notwaldorf
97
6.4k
Why You Should Never Use an ORM
jnunemaker
PRO
60
9.6k
Transcript
Ԭٕज़Պֶେֶ ిؾిࢠใֶ՝ఔ ֶ෦ɹ֯ுཽ ࣗવݴޠݚڀࣨ ɹ#̏θϛ ʙୈճʙ ϏοΫσʔλղੳೖᶄ
目次 ˔౷ܭͷجૅ ˔֬ີؔɾྦྷੵؔ
統計の基礎 ˔ఆৗͱ ɹ࣌ܥྻղੳͰඞཁͱͳͬͯ͘Δ֓೦ ˔࣌ܥྻͱ ɹ࣌ؒͷྲྀΕͱڞʹ؍ଌྔͷมԽ͕ه͞Εͨσʔλ ɹྫ͑ɾɾɾ ɹɾҝସגͷՁ֨ ɹɾಉ͡ॴͷؾԹؾѹ
統計の基礎 ͋Δ࣌ࠁ̓ʹ؍ଌ͞ΕͨΛ͇ ̓ Ͱද͢ɻ ࣌ܥྻ͕ఆৗͰ͋ΔͨΊͷ݅ɾɾɾ ɾฏۉ͕࣌ؒʹΑΒͣҰఆɹ ɾࢄ͕࣌ؒʹΑΒͣҰఆ ɾࣗݾڞࢄ͕࣌ؒࠩͷؔ ͜͜ͰɺЖ
Мఆɺ̺࣌ؒࠩΛද͢ɻ E[x(t)] = µ E[x(t)− µ]2 = σ 2 E[(x(t)−µ)(x(t − k)−µ)]= C(k)
統計の基礎 ˔౷ܭղੳΛߦ͏্Ͱఆৗੑɺඇৗʹॏཁ ղੳΛ͢Δσʔλͷൣғ͕มΘͬͯಉ͡౷ܭ݁Ռ ͕ಘΒΕΔΛ͍ࣔࠦͯ͠Δɻ ͭ·Γɺ౷ܭ݁ՌʹൣғબʹΑΔۮવੑ͕བྷΉ͜ͱ Λഉআͯ͘͠ΕΔɻ
統計の基礎 ˔౷ܭղੳͱ ɹશମ͔Βൈ͖ग़ͨ͠Ұ෦ΛݟͯɺશମΛΔ ྫ͑ɾɾɾʮຊதͷখֶੜͷମॏΛௐࠪ͢Δʯ ɹௐࠪରɿຊશࠃͷখֶੜશһ ௐࠪͷରͱͳΔूஂΛूஂͱ͍͏ɻ ཧͱͯ͠ɺूஂΛͯ͢ௐࠪ͢ΕΑ͍ɻ
શௐࠪ
統計の基礎 ͕ͩɺूஂ͕େ͖͘ɺௐ͕ࠪࠔͰ͋Δɻ Ὃ ूஂ͔Β̽ݸΛൈ͖ग़ͯ͠؍ଌ͠ɺ ͔ͦ͜ΒશମͷಛΛਪఆ͢Δɻ
؍ଌͷूஂඪຊͱݺͿɻ ಛʹɺཁૉ͕̽ͷ߹େ͖̽͞ͷඪຊͱݺͿɻ
統計の基礎 ʙ౷ܭղੳΛߦ͏্Ͱॏཁͳ๏ଇʙ ˔େͷ๏ଇ ʮ͋Δूஂ͔Βແ࡞ҝநग़͞ΕͨඪຊฏۉඪຊͷαΠζΛ େ͖͘͢Δͱਅͷฏۉʢूஂͷฏۉʣʹۙͮ͘ʯ ˔த৺ۃݶఆཧ ʮฏۉЖɺࢄМΛ࣋ͭҙͷʹै͏ूஂ͔Βɺ େ͖̽͞ͷඪຊΛநग़ͨ࣌͠ɺඪຊฏۉ̚<͇>ͷɺ͕̽े େ͖͚ΕฏۉЖɺࢄМ̽ͷਖ਼نʹۙͮ͘ʯ
˔֬ີؔ ɹ֬มʢཧྔʣ̭͕ඍখͳ۠ؒ ʹͦͷΛͱΔ֬ʢ֬ີʣΛ༩͑Δؔ ɹ֬ม̭͕ɹɹɹɹɹͱͳΔ֬Λ ͱ͢Δͱɺ ֬ਖ਼Ͱ͋Γɺͦͷ͕̍Ͱ͋Δ͜ͱ͔Βɺ f
(x) x < X < x +δx P(a < X < b) = f (x)dx a b ∫ a < X < b P(a < X < b) f (x)dx −∞ +∞ ∫ =1 f (x) ≥ 0
確率密度関数・累積分布関数 ˔ώετάϥϜ ɹ۠ؒͷදΛԣ࣠ʹɺͦͷ۠ؒͷΛॎ࣠ʹͱͬͯࢹ֮Խ ͨ͠ͷ ֬มͷಛ͕Θ͔Δ ɹɾͲͷ͘Β͍͕ΓΛ͔࣋ͭ ɹɾҰ൪ଟ͍Կ͔
ͳͲʜ ώετάϥϜͷ֓ܗΛ͑ΔͨΊʹن֨ԽΛߦ͏ɻ ɹɾΛσʔλͰׂΓɺ֤۠ؒͰͷ֬Λܭࢉ͢Δ ɹɾ֤۠ؒͷ֬Λ۠ؒͷ෯ͰׂΓɺ֬ີΛܭࢉ͢Δ ɹɾԣ࣠ʹ֤۠ؒͷදɺॎ࣠ʹ֬ີΛϓϩοτ͢Δ
確率密度関数・累積分布関数 ˔ྦྷੵؔ ɹ֬มͷ͕͇ΑΓେ͖͘ͳΔ֬Λ༩͑Δؔ ֬ີؔΛ༻͍ͯɺ ͱఆٛ͞ΕΔؔ'Λ֬ม̭ͷྦྷੵؔͱ͍ ͏ɻ F(x)
= P(X > x) = f ( ! x )d ! x x ∞ ∫
確率密度関数・累積分布関数 ˔ར ۠ؒΛ۠Δඞཁ͕ͳ͍ͨΊɺσʔλ͕ൺֱతগͳ͘ ͯ͋Δఔ͖Ε͍ʹඳ͚Δɻ σʔλͱྦྷੵؔ̍ର̍ʹରԠ͢Δɻ ˔άϥϑͷॻ͖ํ ɹ֬ີؔʢੵʣΛܦ༝͢Δํ๏ɺݫີͳ݁Ռ
Λಘ͍ͨ߹ʹ΄ͱΜͲΘΕͳ͍ɻ࣮ࡍɺσʔλͷ ιʔτͰٻΊΔɻ ᾇ̣ݸͷσʔλΛେ͖͍ॱʹฒΔ ᾈঢॱʹσʔλʹରͯ͠ɺ͔̍Β/·ͰॱҐ3Λ͚ͭΔ ᾉσʔλͷΛԣ࣠ʹɺ3/Λॎ࣠ʹϓϩοτ͢Δ
参考文献 ˔ߴ҆ඒࠤࢠฤஶɺాଜޫଠɾࡾӜߤஶɺ ɹʮֶੜɾٕज़ऀͷͨΊͷϏοΫσʔλղੳೖʯ ʢୈ̍ষʙୈ̏ষʣɺ ɹגࣜձࣾຊධࣾɺ݄