Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
感性を考慮した日本語俗語の標準語変換
Search
kakubari
February 13, 2017
Technology
0
380
感性を考慮した日本語俗語の標準語変換
長岡技術科学大学 自然言語処理研究室
学部3年 角張竜晴
文献紹介:人工知能学会論文誌Vol.32(2017) No.1
kakubari
February 13, 2017
Tweet
Share
More Decks by kakubari
See All by kakubari
動詞クエリの語間の関係性に基づくクエリマイニング
kakubari
0
110
Neural Modeling of Multi-Predicate Interactions for Japanese Predicate Argument Structure Analysis
kakubari
1
160
Leveraging Crowdsourcing for Paraphrase Recognition
kakubari
0
82
Automatically Acquired Lexical Knowledge Improves Japanese Joint Morphological and Dependency Analysis
kakubari
0
100
Labeling the Semantic Roles of Commas
kakubari
0
76
Integrating Case Frame into Japanese to Chinese Hierarchical Phrase-based Translation Model
kakubari
0
110
Improving Chinese Semantic Role Labelingusing High-quality Surface and Deep Case Frames
kakubari
0
89
Exploring Verb Frames for Sentence Simplification in Hindi
kakubari
0
130
述語項構造と照応関係のアノテーション
kakubari
0
230
Other Decks in Technology
See All in Technology
Practical Agentic AI in Software Engineering
uzyn
0
110
S3アクセス制御の設計ポイント
tommy0124
3
200
Webブラウザ向け動画配信プレイヤーの 大規模リプレイスから得た知見と学び
yud0uhu
0
230
TS-S205_昨年対比2倍以上の機能追加を実現するデータ基盤プロジェクトでのAI活用について
kaz3284
1
170
新規プロダクトでプロトタイプから正式リリースまでNext.jsで開発したリアル
kawanoriku0
1
120
Rustから学ぶ 非同期処理の仕組み
skanehira
1
140
研究開発と製品開発、両利きのロボティクス
youtalk
1
530
ハードウェアとソフトウェアをつなぐ全てを内製している企業の E2E テストの作り方 / How to create E2E tests for a company that builds everything connecting hardware and software in-house
bitkey
PRO
1
150
DevIO2025_継続的なサービス開発のための技術的意思決定のポイント / how-to-tech-decision-makaing-devio2025
nologyance
1
400
AI時代を生き抜くエンジニアキャリアの築き方 (AI-Native 時代、エンジニアという道は 「最大の挑戦の場」となる) / Building an Engineering Career to Thrive in the Age of AI (In the AI-Native Era, the Path of Engineering Becomes the Ultimate Arena of Challenge)
jeongjaesoon
0
160
自作JSエンジンに推しプロポーザルを実装したい!
sajikix
1
180
💡Ruby 川辺で灯すPicoRubyからの光
bash0c7
0
120
Featured
See All Featured
Responsive Adventures: Dirty Tricks From The Dark Corners of Front-End
smashingmag
252
21k
The MySQL Ecosystem @ GitHub 2015
samlambert
251
13k
RailsConf & Balkan Ruby 2019: The Past, Present, and Future of Rails at GitHub
eileencodes
139
34k
Helping Users Find Their Own Way: Creating Modern Search Experiences
danielanewman
29
2.9k
The Language of Interfaces
destraynor
161
25k
Thoughts on Productivity
jonyablonski
70
4.8k
Performance Is Good for Brains [We Love Speed 2024]
tammyeverts
12
1.1k
Large-scale JavaScript Application Architecture
addyosmani
512
110k
Mobile First: as difficult as doing things right
swwweet
224
9.9k
実際に使うSQLの書き方 徹底解説 / pgcon21j-tutorial
soudai
PRO
188
55k
Writing Fast Ruby
sferik
628
62k
For a Future-Friendly Web
brad_frost
180
9.9k
Transcript
Ԭ ٕ ज़ Պ ֶ େ ֶ ࣗ વ ݴ ޠ ॲ ཧ ݚ ڀ ࣨ ֶ ෦ ֯ ு ཽ 感性を考慮した日本語俗語の標準語変換 Conversion of Japanese Slang into Standard Japanese Considering Sensibility 松本 和幸, 土屋 誠司, 芋野 美紗子, 吉田 稔, 北 研二 人工知能学会論文誌 7PM /P Q8MM"@ จಛूʮΣϒΠϯςϦδΣϯεͱΠϯλϥΫγϣϯʯ ਤදจΑΓҾ༻
概要 ˔एऀݴ༿Λҙຯతʹײੑతʹྨࣅͨ͠ඪ४ޠʹ ม͢Δ ଟ࣍ݩͷҹ࣠ ҙຯϕΫτϧ ˔͔ͬͨ͜ͱ
ϕʔεϥΠϯख๏ΑΓߴ͍.33ͷ͕ߴ͍ ඪ४ޠΒ͠͞ͷείΞٴͼײੑྨࣅʹجͮ͘ϑΟ ϧλϦϯάʹΑΓɺਖ਼ղީิͷมॱҐΛߴ͘อͯ Δ
はじめに ˔एऀݴ༿ͷதʹɺඪ४ޠΛݴ͍͑ͨදݱ͕ଟ͘ ଘࡏ͢Δɻ एऀݴ༿Λඪ४ޠʹม͢Δͱʜ ɹҙݟɾධੳײೝࣝͷਫ਼Λվળ ˔एऀݴ༿ΘΕΔظؒ໘ɺίϛϡχςΟʹ Β͖͕ͭ͋Γɺҙຯ༻๏࣌ͱͱʹมԽ͢Δɻ
8FC্ͷ4/4͔Βऩूͨ͠ςΩετͷίʔύε ײੑධՁ࣠ͱҙຯϕΫτϧΛ༻͍ͯʜ ɹҙຯతʹײੑతʹྨࣅͨ͠ඪ४ޠʹ͢Δ
実験手法 ˔एऀݴ༿ͷײੑੳ एऀݴ༿ͷײੑධՁΞϯέʔτ एऀݴ༿ͱඪ४ޠͷײੑൺֱ ˔ίʔύεͷߏங एऀ5XFFUίʔύε ˔एऀݴ༿͔Βඪ४ޠͷมख๏
จ຺ྨࣅੑʹجͮ͘ྨޠͷऔಘ ଏޠΒ͠͞ͷܭࢉ ײੑྨࣅʹجͮ͘ީิநग़
若者言葉の感性評価アンケート ˔एऀײίʔύε χίχίେඦՊ ɹޠΛબఆ ˔ධՁํ๏ ඃݧऀʹޠ ֤ޠʹରͯ͠ɺ໊̎Ҏ্͕ճ
छྨͷײੑධՁର ֤ஈ֊ͰධՁ ࣍ݩͷײੑධՁϕΫτϧʹมɾਖ਼ نԽ͠ɺࣗݾ৫ԽϚοϓΛ༻͍ͯੳ ˔ධՁ݁Ռ Α͘ࣅͨҹͷݴ༿͕͍ۙҐஔʹදࣔ 感性評価ベクトルに基づき自己組織化マップに より若者言葉を配置した例 アンケートに用いた感性評価軸
若者言葉と標準語の感性比較 ˔ޠͷதͰɺҎԼͷ݅ʹͯ·ΔޠΛநग़ ಉҰදهޠ͕طଘ͢Δඪ४ޠʹొ͞Ε͍ͯͳ͍ ҙຯ͕ಉҰ·ͨྨࣅ͢Δදݱ͕ࣙॻʹొ͞Ε͍ͯΔ ˔एऀݴ༿ͱରԠ͢Δඪ४ޠͷ QPTJUJWFOFHBUJWFOFVUSBMͷ༁ Ұக͢Δ߹ɺ
Ұக͠ͳ͍߹͋Δ एऀݴ༿͔Βඪ४ޠม͢Δͱ ɹײੑ͕มԽ͢Δ एऀݴ༿QPTJUJWFඪ४ޠOFHBUJWF͕ 若者言葉と対応する標準語の感性比較
俗語らしさの計算 ˔ޠͷಛʢ/Pd/P·ͰͷಛྔʣΛϕΫτϧͰදݱ ଏޠͱඪ४ޠͷํͰදಛྔΛநग़ɺྨࣅΛٻΊΔ ˔ଏޠΒ͠͞ͷείΞ4D XJ ɹ͕ᮢҎ্ͳΒग़ྗީิ͔Βআ֎ 文字列から抽出する表層特徴量
感性類似度に基づく候補抽出 ײੑධՁରͷछྨΛײੑධՁϕΫτϧͱ͢Δɻ ΞϯέʔτऔಘࡁΈͷएऀݴ༿ͷ֓೦ϕΫτϧʹ͓͚Δ֤࣍ݩͷ ؔ࿈ΛٻΊɺײੑධՁॏΈߦྻΛٻΊΔɻ ͦͯ͠ɺײੑධՁϕΫτϧͷಋग़Λߦ͏ɻ ೖྗ͞Εͨएऀݴ༿͔Βਪఆ͞ΕͨײੑධՁϕΫτϧͱɺม
ީิͱͯ͠ಘΒΕͨ୯ޠͷײੑධՁϕΫτϧͷײੑྨࣅΛܭࢉ ͢Δɻ ͜ͷ݁Ռͱඪ४ޠΒ͠͞ͷείΞʢ4D XJ º ʣΛֻ͚߹Θͤ ͨͰɺมީิΛॱҐ͚͢Δɻ
若者言葉の標準語への変換候補 Ұͭͷएऀݴ༿ʹ̏ޠͷඪ४ޠީิ͕ਖ਼ղީิͱͯ͠༩ ͞ΕΔɻ 若者言葉と対応する標準語の例
実験結果 ˔ϕʔεϥΠϯख๏ ඪ४ޠΒ͠͞ͷείΞܭࢉٴͼײੑྨࣅͷܭࢉ͠ͳ͍ ֓೦ϕΫτϧͷྨࣅͷΈͰͷஅ ˔ධՁํ๏ .33 .FBO3FDJQSPDBM3BOL
ͷฏۉ ݕࡧ݁Ռͷ͏ͪɺਖ਼ղͱͳΔ୯ޠ͕/ݸग़ྗ͞Εͨ߹ɺ ͦͷ୯ޠͷग़ྗॱҐ3J ͷٯͷ૯Λਖ਼ղ୯ޠͰׂͬͨ
実験結果 .33 ඪ४ޠͷਖ਼ղީิΛ࣋ͭଏޠʹରͯ͠ܭࢉ ʢඪ४ޠΒ͠͞ͷείΞٴͼײੑྨࣅʹجͮ͘ϑΟϧλϦϯάख๏ʣ .33 ΞϯέʔτʹΑΓਖ਼ղީิΛܾఆͨ͠ଏޠʹରͯ͠ܭࢉ ʢϕʔεϥΠϯख๏ʣ
˔.33 ͕.33 ΑΓ͍ ෆཁͳޠΛϑΟϧλϦϯάͰআڈ ɹ͢Δ͜ͱ͕Ͱ͖͍ͯΔɻ MRR平均の比較
実験結果 ఏҊख๏Ͱɺਖ਼ղҎ֎ͷྨࣅޠީิΛϑΟϧλϦϯά͢Δ ͜ͱͰɺਖ਼ղީิͷॱҐΛߴ͘อ͍ͯͯΔɻ 変換候補の例
実験結果 ײੑྨࣅɺ֓೦ϕΫτϧͷ࣍ݩ͕গͳ͍࣌ʹɺͦΕΛΧόʔ͢Δ ޮՌ͕େ͖͍ɻ ඪ४ޠΒ͠͞ͷείΞʹΑΔϑΟϧλϦϯάͰɺਖ਼ղΛ͢͜ͱ͕ Ͱ͖ͳ͍߹͕͋Δɻ 感性類似度のみを適用した場合の比較 標準語らしさのスコアによるフィルタリングのみを適 用した場合の比較
まとめ ˔ඪ४ޠΒ͠͞ͷείΞٴͼײੑྨࣅʹجͮ͘ϑΟϧλϦ ϯάʹΑΓɺਖ਼ղީิͷมॱҐΛߴ͘Ͱ͖Δɻ ˔ඪ४ޠΒ͠͞ͷείΞͷܭࢉํ๏ͷվળʹΑΓɺϑΟϧλ Ϧϯάͷਫ਼Λ্ͤ͞Δඞཁ͕͋Δɻ