Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
感性を考慮した日本語俗語の標準語変換
Search
kakubari
February 13, 2017
Technology
0
390
感性を考慮した日本語俗語の標準語変換
長岡技術科学大学 自然言語処理研究室
学部3年 角張竜晴
文献紹介:人工知能学会論文誌Vol.32(2017) No.1
kakubari
February 13, 2017
Tweet
Share
More Decks by kakubari
See All by kakubari
動詞クエリの語間の関係性に基づくクエリマイニング
kakubari
0
110
Neural Modeling of Multi-Predicate Interactions for Japanese Predicate Argument Structure Analysis
kakubari
1
170
Leveraging Crowdsourcing for Paraphrase Recognition
kakubari
0
90
Automatically Acquired Lexical Knowledge Improves Japanese Joint Morphological and Dependency Analysis
kakubari
0
100
Labeling the Semantic Roles of Commas
kakubari
0
85
Integrating Case Frame into Japanese to Chinese Hierarchical Phrase-based Translation Model
kakubari
0
120
Improving Chinese Semantic Role Labelingusing High-quality Surface and Deep Case Frames
kakubari
0
93
Exploring Verb Frames for Sentence Simplification in Hindi
kakubari
0
140
述語項構造と照応関係のアノテーション
kakubari
0
240
Other Decks in Technology
See All in Technology
小さく、早く、可能性を多産する。生成AIプロジェクト / prAIrie-dog
visional_engineering_and_design
0
320
1万人を変え日本を変える!!多層構造型ふりかえりの大規模組織変革 / 20260108 Kazuki Mori
shift_evolve
PRO
5
690
2025-12-27 Claude CodeでPRレビュー対応を効率化する@機械学習社会実装勉強会第54回
nakamasato
4
1.4k
善意の活動は、なぜ続かなくなるのか ーふりかえりが"構造を変える判断"になった半年間ー
matsukurou
0
230
2025年の医用画像AI/AI×medical_imaging_in_2025_generated_by_AI
tdys13
0
300
_第4回__AIxIoTビジネス共創ラボ紹介資料_20251203.pdf
iotcomjpadmin
0
170
戰略轉變:從建構 AI 代理人到發展可擴展的技能生態系統
appleboy
0
180
Oracle Database@Google Cloud:サービス概要のご紹介
oracle4engineer
PRO
1
820
Keynoteから見るAWSの頭の中
nrinetcom
PRO
1
160
Introduction to Sansan Meishi Maker Development Engineer
sansan33
PRO
0
330
投資戦略を量産せよ 2 - マケデコセミナー(2025/12/26)
gamella
1
610
Authlete で実装する MCP OAuth 認可サーバー #CIMD の実装を添えて
watahani
0
400
Featured
See All Featured
30 Presentation Tips
portentint
PRO
1
180
Docker and Python
trallard
47
3.7k
SEOcharity - Dark patterns in SEO and UX: How to avoid them and build a more ethical web
sarafernandez
0
99
RailsConf & Balkan Ruby 2019: The Past, Present, and Future of Rails at GitHub
eileencodes
141
34k
Building Experiences: Design Systems, User Experience, and Full Site Editing
marktimemedia
0
360
Beyond borders and beyond the search box: How to win the global "messy middle" with AI-driven SEO
davidcarrasco
0
34
The agentic SEO stack - context over prompts
schlessera
0
580
Neural Spatial Audio Processing for Sound Field Analysis and Control
skoyamalab
0
140
[RailsConf 2023 Opening Keynote] The Magic of Rails
eileencodes
31
9.8k
How to Talk to Developers About Accessibility
jct
1
94
Data-driven link building: lessons from a $708K investment (BrightonSEO talk)
szymonslowik
1
870
Discover your Explorer Soul
emna__ayadi
2
1k
Transcript
Ԭ ٕ ज़ Պ ֶ େ ֶ ࣗ વ ݴ ޠ ॲ ཧ ݚ ڀ ࣨ ֶ ෦ ֯ ு ཽ 感性を考慮した日本語俗語の標準語変換 Conversion of Japanese Slang into Standard Japanese Considering Sensibility 松本 和幸, 土屋 誠司, 芋野 美紗子, 吉田 稔, 北 研二 人工知能学会論文誌 7PM /P Q8MM"@ จಛूʮΣϒΠϯςϦδΣϯεͱΠϯλϥΫγϣϯʯ ਤදจΑΓҾ༻
概要 ˔एऀݴ༿Λҙຯతʹײੑతʹྨࣅͨ͠ඪ४ޠʹ ม͢Δ ଟ࣍ݩͷҹ࣠ ҙຯϕΫτϧ ˔͔ͬͨ͜ͱ
ϕʔεϥΠϯख๏ΑΓߴ͍.33ͷ͕ߴ͍ ඪ४ޠΒ͠͞ͷείΞٴͼײੑྨࣅʹجͮ͘ϑΟ ϧλϦϯάʹΑΓɺਖ਼ղީิͷมॱҐΛߴ͘อͯ Δ
はじめに ˔एऀݴ༿ͷதʹɺඪ४ޠΛݴ͍͑ͨදݱ͕ଟ͘ ଘࡏ͢Δɻ एऀݴ༿Λඪ४ޠʹม͢Δͱʜ ɹҙݟɾධੳײೝࣝͷਫ਼Λվળ ˔एऀݴ༿ΘΕΔظؒ໘ɺίϛϡχςΟʹ Β͖͕ͭ͋Γɺҙຯ༻๏࣌ͱͱʹมԽ͢Δɻ
8FC্ͷ4/4͔Βऩूͨ͠ςΩετͷίʔύε ײੑධՁ࣠ͱҙຯϕΫτϧΛ༻͍ͯʜ ɹҙຯతʹײੑతʹྨࣅͨ͠ඪ४ޠʹ͢Δ
実験手法 ˔एऀݴ༿ͷײੑੳ एऀݴ༿ͷײੑධՁΞϯέʔτ एऀݴ༿ͱඪ४ޠͷײੑൺֱ ˔ίʔύεͷߏங एऀ5XFFUίʔύε ˔एऀݴ༿͔Βඪ४ޠͷมख๏
จ຺ྨࣅੑʹجͮ͘ྨޠͷऔಘ ଏޠΒ͠͞ͷܭࢉ ײੑྨࣅʹجͮ͘ީิநग़
若者言葉の感性評価アンケート ˔एऀײίʔύε χίχίେඦՊ ɹޠΛબఆ ˔ධՁํ๏ ඃݧऀʹޠ ֤ޠʹରͯ͠ɺ໊̎Ҏ্͕ճ
छྨͷײੑධՁର ֤ஈ֊ͰධՁ ࣍ݩͷײੑධՁϕΫτϧʹมɾਖ਼ نԽ͠ɺࣗݾ৫ԽϚοϓΛ༻͍ͯੳ ˔ධՁ݁Ռ Α͘ࣅͨҹͷݴ༿͕͍ۙҐஔʹදࣔ 感性評価ベクトルに基づき自己組織化マップに より若者言葉を配置した例 アンケートに用いた感性評価軸
若者言葉と標準語の感性比較 ˔ޠͷதͰɺҎԼͷ݅ʹͯ·ΔޠΛநग़ ಉҰදهޠ͕طଘ͢Δඪ४ޠʹొ͞Ε͍ͯͳ͍ ҙຯ͕ಉҰ·ͨྨࣅ͢Δදݱ͕ࣙॻʹొ͞Ε͍ͯΔ ˔एऀݴ༿ͱରԠ͢Δඪ४ޠͷ QPTJUJWFOFHBUJWFOFVUSBMͷ༁ Ұக͢Δ߹ɺ
Ұக͠ͳ͍߹͋Δ एऀݴ༿͔Βඪ४ޠม͢Δͱ ɹײੑ͕มԽ͢Δ एऀݴ༿QPTJUJWFඪ४ޠOFHBUJWF͕ 若者言葉と対応する標準語の感性比較
俗語らしさの計算 ˔ޠͷಛʢ/Pd/P·ͰͷಛྔʣΛϕΫτϧͰදݱ ଏޠͱඪ४ޠͷํͰදಛྔΛநग़ɺྨࣅΛٻΊΔ ˔ଏޠΒ͠͞ͷείΞ4D XJ ɹ͕ᮢҎ্ͳΒग़ྗީิ͔Βআ֎ 文字列から抽出する表層特徴量
感性類似度に基づく候補抽出 ײੑධՁରͷछྨΛײੑධՁϕΫτϧͱ͢Δɻ ΞϯέʔτऔಘࡁΈͷएऀݴ༿ͷ֓೦ϕΫτϧʹ͓͚Δ֤࣍ݩͷ ؔ࿈ΛٻΊɺײੑධՁॏΈߦྻΛٻΊΔɻ ͦͯ͠ɺײੑධՁϕΫτϧͷಋग़Λߦ͏ɻ ೖྗ͞Εͨएऀݴ༿͔Βਪఆ͞ΕͨײੑධՁϕΫτϧͱɺม
ީิͱͯ͠ಘΒΕͨ୯ޠͷײੑධՁϕΫτϧͷײੑྨࣅΛܭࢉ ͢Δɻ ͜ͷ݁Ռͱඪ४ޠΒ͠͞ͷείΞʢ4D XJ º ʣΛֻ͚߹Θͤ ͨͰɺมީิΛॱҐ͚͢Δɻ
若者言葉の標準語への変換候補 Ұͭͷएऀݴ༿ʹ̏ޠͷඪ४ޠީิ͕ਖ਼ղީิͱͯ͠༩ ͞ΕΔɻ 若者言葉と対応する標準語の例
実験結果 ˔ϕʔεϥΠϯख๏ ඪ४ޠΒ͠͞ͷείΞܭࢉٴͼײੑྨࣅͷܭࢉ͠ͳ͍ ֓೦ϕΫτϧͷྨࣅͷΈͰͷஅ ˔ධՁํ๏ .33 .FBO3FDJQSPDBM3BOL
ͷฏۉ ݕࡧ݁Ռͷ͏ͪɺਖ਼ղͱͳΔ୯ޠ͕/ݸग़ྗ͞Εͨ߹ɺ ͦͷ୯ޠͷग़ྗॱҐ3J ͷٯͷ૯Λਖ਼ղ୯ޠͰׂͬͨ
実験結果 .33 ඪ४ޠͷਖ਼ղީิΛ࣋ͭଏޠʹରͯ͠ܭࢉ ʢඪ४ޠΒ͠͞ͷείΞٴͼײੑྨࣅʹجͮ͘ϑΟϧλϦϯάख๏ʣ .33 ΞϯέʔτʹΑΓਖ਼ղީิΛܾఆͨ͠ଏޠʹରͯ͠ܭࢉ ʢϕʔεϥΠϯख๏ʣ
˔.33 ͕.33 ΑΓ͍ ෆཁͳޠΛϑΟϧλϦϯάͰআڈ ɹ͢Δ͜ͱ͕Ͱ͖͍ͯΔɻ MRR平均の比較
実験結果 ఏҊख๏Ͱɺਖ਼ղҎ֎ͷྨࣅޠީิΛϑΟϧλϦϯά͢Δ ͜ͱͰɺਖ਼ղީิͷॱҐΛߴ͘อ͍ͯͯΔɻ 変換候補の例
実験結果 ײੑྨࣅɺ֓೦ϕΫτϧͷ࣍ݩ͕গͳ͍࣌ʹɺͦΕΛΧόʔ͢Δ ޮՌ͕େ͖͍ɻ ඪ४ޠΒ͠͞ͷείΞʹΑΔϑΟϧλϦϯάͰɺਖ਼ղΛ͢͜ͱ͕ Ͱ͖ͳ͍߹͕͋Δɻ 感性類似度のみを適用した場合の比較 標準語らしさのスコアによるフィルタリングのみを適 用した場合の比較
まとめ ˔ඪ४ޠΒ͠͞ͷείΞٴͼײੑྨࣅʹجͮ͘ϑΟϧλϦ ϯάʹΑΓɺਖ਼ղީิͷมॱҐΛߴ͘Ͱ͖Δɻ ˔ඪ४ޠΒ͠͞ͷείΞͷܭࢉํ๏ͷվળʹΑΓɺϑΟϧλ Ϧϯάͷਫ਼Λ্ͤ͞Δඞཁ͕͋Δɻ