Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
OpenAIとLangChainを活用して ジェンダーバイアス解消ツールを作った話
Search
Kana Haebaru
October 10, 2024
Technology
0
28
OpenAIとLangChainを活用して ジェンダーバイアス解消ツールを作った話
LangChain Meetup Tokyo #3
https://langchain.connpass.com/event/331827/
Kana Haebaru
October 10, 2024
Tweet
Share
More Decks by Kana Haebaru
See All by Kana Haebaru
開発以外の業務も、Cursor で効率化できる?
kanasann1106
0
70
生成AI活用機能のプロンプト設計と開発の裏側
kanasann1106
0
210
バイアスを越えて、自分らしいエンジニアキャリアを見つける
kanasann1106
0
160
Supabase × GASでサクッと作る!社内向け管理画面の作成法
kanasann1106
0
260
いいプロダクトを作りたい!の想いで動いていた結果 テックリードになっていた話
kanasann1106
0
82
駆け出しエンジニア時代に書いた クソコードをリファクタしてみた
kanasann1106
0
690
フロントエンドエンジニアがLaravelでテストコードを書いてみた
kanasann1106
0
810
Other Decks in Technology
See All in Technology
AI人生苦節10年で会得したAIがやること_人間がやること.pdf
shibuiwilliam
1
230
帳票構造化タスクにおけるLLMファインチューニングの性能評価
yosukeyoshida
1
200
FAST導入1年間のふりかえり〜現実を直視し、さらなる進化を求めて〜 / Review of the first year of FAST implementation
wooootack
1
220
私とAWSとの関わりの歩み~意志あるところに道は開けるかも?~
nagisa53
1
140
隙間時間で爆速開発! Claude Code × Vibe Coding で作るマニュアル自動生成サービス
akitomonam
2
240
金融サービスにおける高速な価値提供とAIの役割 #BetAIDay
layerx
PRO
0
190
テキストからの実世界知能の実現に向けて
sumoai
0
110
【CEDEC2025】LLMを活用したゲーム開発支援と、生成AIの利活用を進める組織的な取り組み
cygames
PRO
1
2k
CSPヘッダー導入で実現するWebサイトの多層防御:今すぐ試せる設定例と運用知見
llamakko
1
280
2025新卒研修・HTML/CSS #弁護士ドットコム
bengo4com
2
4k
Perlアプリケーションで トレースを実装するまでの 工夫と苦労話
masayoshi
0
250
Bet "Bet AI" - Accelerating Our AI Journey #BetAIDay
layerx
PRO
1
370
Featured
See All Featured
Fireside Chat
paigeccino
37
3.6k
Unsuck your backbone
ammeep
671
58k
Producing Creativity
orderedlist
PRO
346
40k
Fantastic passwords and where to find them - at NoRuKo
philnash
51
3.3k
Visualizing Your Data: Incorporating Mongo into Loggly Infrastructure
mongodb
47
9.6k
Product Roadmaps are Hard
iamctodd
PRO
54
11k
Done Done
chrislema
185
16k
What's in a price? How to price your products and services
michaelherold
246
12k
The World Runs on Bad Software
bkeepers
PRO
70
11k
ピンチをチャンスに:未来をつくるプロダクトロードマップ #pmconf2020
aki_iinuma
126
53k
JavaScript: Past, Present, and Future - NDC Porto 2020
reverentgeek
50
5.5k
The Power of CSS Pseudo Elements
geoffreycrofte
77
5.9k
Transcript
OpenAIとLangChainを活用して ジェンダーバイアス解消ツールを作った話 2024.10.09 LangChain Meetup Tokyo #3
南風原 香奈(はえばる かな) 2018年:大学卒業後、Webエンジニアになる Webサイトの制作(CMS構築)を経験 2019年:建設SaaSの事業会社に転職 システム開発・EM・スクラムマスター・PdMを経験 2023年10月:フリーランスなる 主にWebサービスの開発に携わる bgrass株式会社でエンジニアリングに従事
女性IT/Webエンジニアのためのハイスキル転職サイト 『WAKE Career』の開発に従事 X:@kanasann1106 自己紹介
<ミッション> 「なりたい」を解放する <ビジョン> テクノロジーとコミュニティの力で DEIを実現する bgrass株式会社
多様で誰もが働きやすく、 活躍しやすい企業へ 持続的にキャリアを積み、 自分の人生を選択できる女性が増える 目指す世界 バイアスによって選択肢を狭め ず自分の「なりたい」を解放で きる世界を目指す ビジネスで 社会課題を解決
エンジニア 不足解消 組織の多様性 イノベーション 選ばれる 企業に 経済的自立 持続可能 なキャリア 女性の 雇用問題解決
女性IT/Webエンジニアのための ハイスキル転職サービス 「WAKE Career」
特徴(求職者側) 格差を是正し、女性が安心して転職活動できる仕組みに 6項目の指標化で 企業の環境が測りやすい 12
独自の「サステナブル職場診断」で現状可視化 特徴(企業側) 6項目で環境を指標化 現在の立ち位置と ネクストステップの提案 指標基準を クリアした企業のみが 掲載可能
女性エンジニアの背中を押し、キャリアの可能性を広げる 特徴(企業側)
話すこと バイアスチェッカーとは? プロンプト設計 まとめ LangChainの活用
バイアスチェッカーとは? (ジェンダーバイアス解消ツール)
求人票や求職者とのメッセージの中で ジェンダーバイアスを含む表現や、 女性が応募をためらうような言葉遣い をチェックし、適切な表現を提案
ジェンダーバイアスとは? 男性や女性に対して持っている先入観や偏見のこと 例) ・男性はリーダー、女性はサポート ・育休を取るのは女性 ・技術職=男性、看護師=女性
バイアスを持つこと自体が問題ではない (だって、人間だもの) ⇩ バイアスを認識し、それを取り除く取り組みが大事
結果を表示 ・不適切なキーワード ・解説 ・提案 5つの観点でチェック
プロンプト設計
評価基準 ジェンダー表現の多様性 性別や性の多様性に基づく差別表現が含まれているか アクセシビリティ すべてのユーザーにとって理解しやすい内容か 差別的な表現 人種、性別、宗教などの特徴に基づいた差別表現が含まれているか 排他的な表現 特定の性別や年齢、立場の人々を意図的にまたは無意識に排除している表現 が含まれているか
その他 上記のカテゴリに当てはまらない場合の評価
【プロンプト26の原則】 役割を与える(あなたは〇〇〇です。 ) プロンプトのフォーマット化 従うべき要件を提示する ステップバイステップで考えてもらう etc.
LangChainの活用
JSON形式で出力したい LangChain PydanticOutputParserを活用
PydanticOutputParserのメリット 出力のスキーマを明確に定義できる 出力データが扱いやすい、コードの可読性や保守性◎ 型の厳密なチェックをしてくれる リクエストデータが意図しない型やフォーマットであればエラー を返してくれる 例外処理とエラーハンドリングの簡素化 エラー発生時のデバッグが容易になり、安定した処理が可能
プロンプトのテンプレート化 LangChain PromptTemplateを活用
PromptTemplateのメリット 柔軟なプロンプト生成ができる テンプレートにパラメータを埋め込める コードの簡略化と再利用性 プロンプトをテンプレート化し再利用可能な状態にできる LLMの応答の精度を高められる プロンプトを事前に定義しておくことで、意図通りの応答を得や すくなる
まとめ バイアスを持つこと自体が問題ではなく、バイアスを認識しそ れを取り除く取り組みが重要(指摘しづらいことをAIで) プロンプト設計大事(※ここが一番苦労した) LangChain(PydanticOutputParserやPromptTemplate)を活 用することでLLMを活用したアプリケーション開発が容易に
Thanks!