Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
Exploratoryセミナー:Prophetアルゴリズムを使った時系列予測
Search
Kan Nishida
November 26, 2018
Technology
0
4.4k
Exploratoryセミナー:Prophetアルゴリズムを使った時系列予測
Facebookのデータサイエンティスト達によってオープンソースとして公開されたProphetという時系列予測のアルゴリズムを、 Exploratoryのアナリティクス・ビューを使って紹介します。
Kan Nishida
November 26, 2018
Tweet
Share
More Decks by Kan Nishida
See All by Kan Nishida
Seminar #52 - Introduction to Exploratory Server
kanaugust
0
350
Exploratory セミナー #61 政府のオープンデータ e-Statの活用
kanaugust
0
1.1k
Exploratory セミナー #60 時系列データの加工、可視化、分析手法の紹介
kanaugust
0
1.2k
Seminar #51 - Machine Learning - How Variable Importance Works
kanaugust
0
680
Exploratory セミナー #59 テキストデータの加工
kanaugust
0
690
Seminar #50 - Salesforce Data, Clean, Visualize, Analyze, & Dashboard
kanaugust
1
410
Exploratory セミナー #58 Exploratory x Salesforce
kanaugust
0
360
Exploratory Seminar #49 - Introduction to Dashboard Cycle with Exploratory
kanaugust
0
400
Seminar #48 - Introduction to Exploratory v6.6
kanaugust
0
360
Other Decks in Technology
See All in Technology
React19.2のuseEffectEventを追う
maguroalternative
0
210
ビズリーチ求職者検索におけるPLMとLLMの活用 / Search Engineering MEET UP_2-1
visional_engineering_and_design
1
120
Wasmのエコシステムを使った ツール作成方法
askua
0
160
アイテムレビュー機能導入からの学びと改善
zozotech
PRO
0
150
Node.js 2025: What's new and what's next
ruyadorno
0
280
ガバメントクラウド(AWS)へのデータ移行戦略の立て方【虎の巻】 / 20251011 Mitsutosi Matsuo
shift_evolve
PRO
2
200
OAuthからOIDCへ ― 認可の仕組みが認証に拡張されるまで
yamatai1212
0
110
2025-10-09_プロジェクトマネージャーAIチャンス
taukami
0
140
プレーリーカードを活用しよう❗❗デジタル名刺交換からはじまるイベント会場交流のススメ
tsukaman
0
160
データ戦略部門 紹介資料
sansan33
PRO
1
3.7k
大規模サーバーレスAPIの堅牢性・信頼性設計 〜AWSのベストプラクティスから始まる現実的制約との向き合い方〜
maimyyym
9
4.6k
JAZUG 15周年記念 × JAT「AI Agent開発者必見:"今"のOracle技術で拡張するAzure × OCIの共存アーキテクチャ」
shisyu_gaku
1
160
Featured
See All Featured
Mobile First: as difficult as doing things right
swwweet
224
10k
I Don’t Have Time: Getting Over the Fear to Launch Your Podcast
jcasabona
33
2.5k
Refactoring Trust on Your Teams (GOTO; Chicago 2020)
rmw
35
3.2k
A designer walks into a library…
pauljervisheath
209
24k
Why You Should Never Use an ORM
jnunemaker
PRO
59
9.6k
Bootstrapping a Software Product
garrettdimon
PRO
307
110k
Helping Users Find Their Own Way: Creating Modern Search Experiences
danielanewman
30
2.9k
Building Adaptive Systems
keathley
44
2.8k
The MySQL Ecosystem @ GitHub 2015
samlambert
251
13k
Build The Right Thing And Hit Your Dates
maggiecrowley
37
2.9k
The Art of Delivering Value - GDevCon NA Keynote
reverentgeek
16
1.7k
How STYLIGHT went responsive
nonsquared
100
5.8k
Transcript
EXPLORATORY
2 εϐʔΧʔ ా צҰ CEO EXPLORATORY ུྺ ถΦϥΫϧຊࣾͰɺ16ʹΘͨΓσʔλαΠΤϯεͷ։ൃνʔϜΛ ͍ɺػցֶशɺϏοάɾσʔλɺϏδωεɾΠϯςϦδΣϯεɺσʔ λϕʔεʹؔ͢Δଟ͘ͷΛੈʹૹΓग़͢ɻ
2016ॳ಄ʹɺΦʔϓϯιʔεͷੈքͰى͖͍ͯΔσʔλαΠΤϯε ͷֵ৽తͳਐาΛɺੈքͷ99%ͷϓϩάϥϛϯάΛ͠ͳ͍ਓͨͪͷ ͱಧ͚͍ͨͱ͍͏ࢥ͍ͷͱɺExploratory, Inc Λ্ཱͪ͛Δɻ ݱࡏExploratory, Inc.ͰCEOΛΊΔ͔ͨΘΒɺσʔλαΠΤϯεɾ ϒʔτΩϟϯϓɾτϨʔχϯάͳͲΛ௨ͯ͠γϦίϯόϨʔͰߦΘΕ ͍ͯΔ࠷ઌͷσʔλαΠΤϯεͷීٴͱڭҭʹऔΓΉɻ @KanAugust
Vision ͯ͢ͷਓ͕σʔλΛͬͯ ΑΓΑ͍ҙࢥܾఆΛ͢Δ
Mission ΞφϦςΟΫεͷຽओԽ
5 σʔλ αΠΤϯςΟετ ϓϩάϥϚʔ ͦͷଞͯ͢ͷਓୡ γϦίϯόϨʔ
6 ϓϩάϥϚʔ ͦͷଞͯ͢ͷਓୡ γϦίϯόϨʔͷ֎ DS
7 ෆެฏͳઓ͍
8 ୈ̏ͷ σʔλαΠΤϯεɺAIɺػցֶश౷ܭֶऀɺ։ൃऀͷͨΊ͚ͩͷͷͰ͋Γ·ͤΜɻ σʔλʹڵຯͷ͋ΔਓͳΒ୭͕ੈքͰ࠷ઌͷΞϧΰϦζϜΛͬͯ ϏδωεσʔλΛ؆୯ʹੳͰ͖Δ͖Ͱ͢ɻ Exploratory͕ͦ͏ͨ͠ੈքΛՄೳʹ͠·͢ɻ
ୈ1ͷ ୈ̎ͷ ୈ̏ͷ ϓϥΠϕʔτ(ߴ͍/ݹ͍) Φʔϓϯɾιʔε(ແྉ/࠷ઌ) UI & ϓϩάϥϛϯά ϓϩάϥϛϯά 2016
2000 1976 ϚωλΠθʔγϣϯ ίϞσΟςΟԽ ຽओԽ ౷ܭֶऀ σʔλαΠΤϯςΟετ Exploratory ΞϧΰϦζϜ Ϣʔβʔɾ ମݧ πʔϧ Φʔϓϯɾιʔε(ແྉ/࠷ઌ) UI & ࣗಈԽ ϏδωεɾϢʔβʔ ςʔϚ σʔλαΠΤϯεͷຽओԽ
質問 σʔλαΠΤϯεɾϫʔΫϑϩʔ 伝える データアクセス 加⼯ 可視化 機械学習・AI 統計 ϓϩάϥϛϯά
質問 ExploratoryͰ؆୯ʹͰ͖ΔλεΫ 伝える データアクセス 加⼯ 可視化 UI 機械学習/AI・ 統計
質問 伝える データアクセス 加⼯ 可視化 機械学習/AI・ 統計
࣌ܥྻ༧ଌ with Prophet
࣌ܥྻ༧ଌ • ڭࢣ͋ΓֶशͷҰछɻ • աڈͷσʔλΛτϨʔχϯάσʔλͱͯ͠ɺ͔ΒΛ༧ଌ͢Δ ϞσϧΛͭ͘Δɻ • ͦ͜ʹະདྷͷΛೖྗ͢Δ͜ͱʹΑΓɺະདྷͷͰͷΛ༧ଌ ͢Δɻ 14
15 • Facebook͕Φʔϓϯιʔε͍ͯ͠Δ࣌ܥྻ༧ଌΞϧΰϦζϜɻ • ౷ܭɺ࣌ܥྻ༧ଌͷઐ͕ࣝͳͯ͑͘ΔΑ͏ʹઃܭ͞Ε͍ͯΔɻ Prophet
16 աڈNͷσʔλ͔Βɺ࣍ͷͷΛ༧ଌ͢ΔϞσϧΛ࡞͢Δɻ ࣌ܥྻ༧ଌ - ౷తͳΞϓϩʔν Day 1 Day 2 Day
3 Day 4 Day 2 Day 3 Day 4 Day 5 Day 3 Day 4 Day 5 Day 6
17 • σʔλؒͷִ࣌ؒؒσʔλΛ௨ͯ͠ҰఆͰ͋Δඞཁ͕͋Δɻ • ͕NAͱͳΔ͕͋ͬͯͳΒͳ͍ɻ • ෳͷपظੑ (िͱ) Λಉ࣌ʹѻ͏ͷ͍͠ɻ •
ύϥϝʔλͷઃఆʹɺઐతͳ͕ࣝඞཁɻ ౷తͳΞϓϩʔνͰͷ࣌ܥྻ༧ଌͷ
18 • ҎԼͷཁૉͷͱͯ͠ද͢͜ͱͷͰ͖ΔΒ͔ͳۂઢͷ͏ͪɺաڈσʔλ ʹ࠷ϑΟοτ͢ΔͷΛ୳͢ɻͦͷۂઢΛະདྷʹԆ͢Δ͜ͱʹΑͬͯ༧ ଌ͢Δɻ • େہతͳτϨϯυ • पظͷقઅੑ(Seasonality )
• िपظͷقઅੑ(༵ʹΑΔӨڹ) • ॕޮՌ - ΫϦεϚε, ৽,ΈͲΓͷ, etc. ProphetʹΑΔ࣌ܥྻ༧ଌ
19 େہతͳτϨϯυ
20 पظͷقઅੑ
21 τϨϯυ + पظੑ
22 िपظͷมಈ
23 τϨϯυ + पظੑ + िपظੑ
24 τϨϯυ + पظੑ + िपظੑ
25 ॕޮՌ
26 τϨϯυ + पظੑ + िपظੑ + ॕޮՌ
27 • ࣌ؒͷൃలΛϞσϧͰදݱ͢Δ͜ͱ͖͋ΒΊΔɻ • ͔ΘΓʹɺ୯ʹۂઢΛݟ͚ͭΔͱ͍͏ʹ͢Δ͜ͱʹΑͬͯҎԼͷΑ͏ͳ རΛಘ͍ͯΔɻ • σʔλؒͷִ͕࣌ؒؒҰఆͰ͋Δඞཁͳ͍ɻ • ͕NAͱͳΔ͕͋ͬͯͳ͍ɻ
• ෳͷपظੑ (िͱ) ͕σϑΥϧτͰߟྀ͞ΕΔɻ • σϑΥϧτͷઃఆͰͦΕͳΓͷ༧ଌ͕Ͱ͖ΔɻઃఆՄೳͳύϥϝʔλͷଟ ͘ઐࣝແ͠ͰཧղՄೳɻ ProphetͷΞϓϩʔνͷར
ྫɿΞφϦςΟΫεɾϏϡʔʹΑΔ࣌ܥྻ༧ଌ ηʔϧεσʔλ (Global_Sales.xls) 28
ͦͷલʹϥΠϯνϟʔτͰՄࢹԽͯ͠ΈΔ 29
࣌ܥྻ༧ଌΞφϦςΟΫεɾϏϡʔΛબ 30
• /࣌ؒͷྻʹOrder DateΛ࣌ؒ୯ҐΛ WEEKͱׂͯ͠ΓͯΔɻ • ͷྻʹSalesΛɺؔΛSUM(߹ܭ)ͱͯ͠ ׂΓͯΔɻ • ̍ؒͷ༧ଌΛ͢ΔͨΊʹɺ༧ଌظؒΛ 52िʹઃఆ͢ΔɻϓϩύςΟϦϯΫΛΫ
ϦοΫ͢Δͱ։͘ɺΞφϦςΟΫεɾϓϩ ύςΟμΠΞϩάͰઃఆ͢Δɻ ༧ଌΛ࣮ߦ 31
࣮ߦϘλϯΛΫϦοΫ͢Δͱ༧ଌ͞Εͨσʔλ͕ΦϨϯδ৭ͷϥΠϯͰදࣔ͞ΕΔɻ 32 ΦϨϯδ৭ͷઢ͚ͩͷ۠ؒࠓޙ1ؒͷ༧ଌΛද͢ɻ ୶͍ΦϨϯδ৭༧ଌͷෆ֬ఆ۠ؒ(uncertainty interval)Λද͢ɻ
33 τϨϯυ λϒΛΫϦοΫ͢ΔͱτϨϯυϥΠϯͷೖͬͨνϟʔτ͕දࣔ͞ΕΔ ΦϨϯδͷઢ͕τϨϯυϥΠϯ
34 ͷɺτϨϯυʹมԽ͕͋ͬͨ࣌ʢνΣϯδϙΠϯτʣΛද͢ɻ ͷߴ͞ɺνΣϯδϙΠϯτͰͷτϨϯυϥΠϯͷ͖ͷมԽྔɻ
35 पظλϒΛΫϦοΫ͢Δͱपظͷνϟʔτ͕දࣔ͞ΕΔ
36 िपظΛݟΔͨΊʹɺ࣌ؒ୯ҐΛʹมߋ࣮ͯ͠ߦ͢͠ɻ
37 िपظλϒΛΫϦοΫ͢Δͱिपظͷνϟʔτ͕දࣔ͞ΕΔ
38 σʔλλϒΛΫϦοΫ͢Δͱ༧ଌ͖ͷσʔλ͕දࣔ͞ΕΔ
• forecasted_value - ༧ଌ • forecasted_value_high/forecasted_value_low - ෆ֬ఆ۠ؒ • trend
- େہతͳτϨϯυ • yearly - पظͷτϨϯυ • weekly - िपظͷτϨϯυ 39 ༧ଌ͖ͷσʔλ
Your Turn! 40
41 • ηʔϧεσʔλɿGlobal_Sales.xls • 20161݄1͔ΒҰؒͷߪങސ٬Λि୯ҐͰ༧ଌ͢Δɻ • ಉ͡༧ଌΛɺ֤Ҭ(Market)͝ͱʹߦ͏ɻ
• /࣌ؒͷྻʹOrder DateΛ࣌ؒ୯Ґ ΛWEEKͱׂͯ͠ΓͯΔɻ • ͷྻʹCustomer IDΛɺؔΛ UNIQ(Ұҙͳͷ)ͱׂͯ͠Γͯ Δɻ •
̍ؒͷ༧ଌΛ͢ΔͨΊʹɺ༧ଌظؒ Λ52िʹઃఆ͢Δɻ ༧ଌͷͨΊͷઃఆ 42
43 ߪങސ٬ͷ༧ଌ݁Ռ
44 ߪങސ٬ͷτϨϯυ 2014͔Β 2015ͷ࢝·Γ ʹ͔͚ͯɺ τϨϯυ্͕ ͖ʹमਖ਼͞Εͯ ͍Δͷ͕ݟͯऔ ΕΔɻ
45 ߪങސ٬ͷपظτϨϯυ पظͰ܁Γฦ ͢τϨϯυͱ͠ ͯɺ6݄,9݄,11 ݄,12݄ʹϐʔΫ ͕͋Δ͜ͱ͕ݟ ͯऔΕΔɻ
܁Γฦ͠ʹMarketྻΛׂΓͯΔɻ Ҭ͝ͱͷ༧ଌͷͨΊͷઃఆ 46
47 Ҭผͷߪങސ٬ͷ༧ଌ݁Ռ ֤Ҭ͝ͱʹɺपظͷτ ϨϯυͱτϨϯυΛ ͱʹɺ2016ͷߪങސ٬ ͕༧ଌ͞Εͨɻ
48 Ҭผͷߪങސ٬ͷ༧ଌ݁Ռ
49 Ҭผͷߪങސ٬ͷτϨϯυ • ֤ҬͰɺҟͳΔ࣌ظʹɺτϨϯυ ʹमਖ਼͕͋ͬͨ͜ͱ͕͔Δɻ • ྫ͑ɺΞδΞଠฏ༸ҬͰɺ2013 11݄͔Β20153݄ʹ͔͚ͯɺτϨϯ υ্͕ํमਖ਼͞Ε͍ͯΔͷ͕ݟͯऔΕΔɻ
50 Ҭผͷߪങސ٬ͷपظτϨϯυ άϩʔόϧͰݟΒΕͨ6্݄० ͷϐʔΫɺΞϑϦΧɺΞδΞ ଠฏ༸ҬɺϤʔϩούɺϥς ϯΞϝϦΧͰݟΒΕΔ͕ɺ USɺΧφμͰݟΒΕͳ͍ɻ
51 Ҭผͷߪങސ٬ͷपظτϨϯυ USɺΧφμͰ11݄த० ʹ࠷େͷϐʔΫ͕͋Δ͜ ͱ͕ݟͯऔΕΔɻ
52 ΞυόϯεɾτϐοΫ
53 ॕޮՌ
54 • Ҏ֎͕ॕͰٳΈʹͳΔͱ͖ɺ٬ɺചΓ্͛ͳͲʹӨ ڹ͕͋ΔͷͰͳ͍͔ʁ • ٳΈʹݶΒͣɺίϯαʔτɺਓؾεϙʔπͷࢼ߹ͳͲɺਓ͕ू ·ΔΠϕϯτ͕͋ΔͳͲ༧ଌʹӨڹ͕͋ΔͷͰͳ͍͔ʁ ͜ΕΒͷޮՌΛߟྀͨ͠༧ଌΛ͢Δ͜ͱ͕Ͱ͖Δɻ ॕޮՌ
55 Wikipediaϖʔδ”Apple Worldwide Developers Conference” (WWDC)ͷΞΫηεσʔλ wwdc_wikipedia.csv σʔλ
56 Apple Worldwide Developers Conference (WWDC)ͷ։࠵ͷσʔλ wwdc_days.csv σʔλ WWDCͷԿ͔
57 Apple Worldwide Developers Conference (WWDC)ͷ։࠵ͷσʔλ wwdc_days.csv σʔλ དྷͷ։࠵
• /࣌ؒͷ୯ҐΛ(DAY)ʹઃఆ • ༧ଌظؒΛ365ʹઃఆ ҰͷΞΫηεΛॕใͳ͠Ͱ༧ଌ 58
59 • աڈͷσʔλʹɺӶ͍ϐʔΫ ͕͋Δ͕ɺ͜ΕWWDCͷ։࠵ ظؒɻ • ༧ଌʹɺ͜Ε͕࠶ݱͰ͖͍ͯ ͳ͍ɻ ҰͷΞΫηεΛॕใͳ͠Ͱ༧ଌ
• WWDC։࠵ͷใΛɺશ֎෦݁ ߹(Full Join)ͰɺσʔλϑϨʔϜʹ Ճ͢Δɻ • શ֎෦݁߹ΛબͿͷɺདྷͷ։ ࠵ͷใ͖͍࣋ͬͯͨͨΊɻ WWDC։࠵ͷใΛՃ 60
WWDC։࠵ͷใ(holidayྻ)͕Ճ͞Εͨɻ 61
ॕใͷྻʹɺholidayྻΛࢦఆɻ ॕใͷྻʹWWDC։࠵ͷใΛࢦఆ 62
WWDC։࠵ظؒͷӶ͍ϐʔΫ͕ ࠶ݱ͞Εͨ༧ଌ͕Ͱ͖͍ͯΔɻ WWDC։࠵ͷޮՌΛߟྀͯ͠ΞΫηεΛ༧ଌ 63
64
65 WWDC։࠵ͷॕޮՌΛ֬ೝ • ॕλϒͰɺॕޮՌΛ֬ೝɻ • ͷϥΠϯ͕ॕޮՌɻ
66 WWDC։࠵ͷॕޮՌΛ֬ೝ
67 ༧ଌϞσϧͷධՁ
68 • աڈσʔλͷ͏ͪɺ৽͍͠ظؒΛςετ༻ʹͱ͓ͬͯ͘ɻ • ςετظؒͷσʔλΛɺͦΕΑΓҎલͷσʔλΛͬͯ༧ଌ͢Δ • ༧ଌσʔλͱɺ࣮ࡍͷςετظؒͷσʔλΛൺֱධՁ͢Δɻ όοΫςετ
69 • ͷྻΛSalesͷSUMʢ߹ܭʣʹ ͢ɻ • ܁Γฦ͠ͷࢦఆΛແ͠ʹ͢ɻ • ςετϞʔυΛTRUEʹΓସ͑ Δɻ ςετϞʔυʹΓସ͑Δ
70 • ·ͨɺʑͷมಈΑΓେہΛݟΔͨΊ ʹɺࠓճ࣌ؒͷ୯Ґʹ݄(MON)Λࢦఆ ͢Δɻ • σʔλதͷ࠷ޙͷҰΛ༧ଌͷධՁʹ ͏ͨΊɺ୯Ґ͕݄ͳͷͰ12Λ༧ଌظؒ ʹࢦఆ͢Δɻ
ςετϞʔυͰͷ༧ଌ݁Ռͷݟ͔ͨ 71
࣮σʔλ2ͭʹׂ͞Ε͍ͯΔɻ ࠨଆͷ੨͍ઢτϨʔχϯάσʔλɺӈଆͷਫ৭ͷઢςετσʔλɻ 72
73 ੨৭ͷઢ͕τϨʔχϯάσʔλɻ ͜ͷൣғͷσʔλΛͱʹɺ༧ଌϞσϧ͕࡞ΒΕΔɻ
ਫ৭ͷઢςετσʔλɻ ͜ͷൣғͷσʔλΛͱʹɺ༧ଌϞσϧͷධՁ͕ߦΘΕΔɻ 74
ΦϨϯδͷઢ͕ɺτϨʔχϯάσʔλΛݩʹ࡞ΒΕͨϞ σϧʹΑΔ༧ଌσʔλɻ 75
͜ͷൣғͷσʔλΛͱʹ༧ଌϞσϧ͕࡞ΒΕ͍ͯΔͨΊɺ ͜ͷൣғͷ࣮σʔλͱϞσϧʹΑΔ༧ଌσʔλ͔ͳΓҰக͍ͯ͠Δɻ 76
͜ͷൣғͷσʔλɺ༧ଌϞσϧͷ࡞ʹ༻͞Ε͍ͯͳ͍ͨΊ ͜ͷൣғϞσϧʹͱͬͯະͷσʔλͱɺͦͷ༧ଌͷൺֱʹͳ͍ͬͯΔɻ 77
• Prophetɺաڈͷ௨ͷύ λʔϯͱɺτϨϯυͷΈ ͔Β༧ଌ͍ͯ͠ΔͷͰɺͦ͜ ͔ΒͷζϨɺʮྫͲ͓Γ ʹͨ͠߹ͱൺͯͲ͏ ͔ͩͬͨʯΛධՁ͢Δ͜ͱʹ ར༻Ͱ͖Δɻ • 2015ɺྫͱൺΔͱ̎
݄ʹམͪࠐΈ͕͋Γɺ11݄ ༧ଌΛ࠷େ্͖͘ճ͍ͬͯ Δ͜ͱ͕ݟͯऔΕΔɻ ςετϞʔυͰͷ༧ଌ݁Ռͷදࣔ 78
ςετ݁ՌͷαϚϦ 79
80 • RMSE (Root Mean Square Error) : ༧ଌ͔ΒͷͣΕͷೋͷฏۉͷϧʔτ •
MAE (Mean Absolute Error) : ༧ଌ͔ΒͷͣΕͷઈରͷฏۉ • MAPE (Mean Absolute Percentage Error) : ύʔηϯτͰදͨ͠༧ଌ͔Βͷ ͣΕͷઈରͷฏۉ • MASE (Mean Absolute Scaled Error) : MAEΛɺτϨʔχϯάσʔλͰͷφ Πʔϒ༧ଌʢҰͭલͷظͱಉ͕͡ݱΕΔͰ͋Ζ͏ͱ͍͏୯७ͳ༧ଌʣ ͷMAEͰׂͬͨͷɻ ࣌ܥྻ༧ଌͷධՁࢦඪ
͜ΕΒͷධՁࢦඪɺ༧ଌσʔλͱ࣮ଌͷζϨɺ ͭ·Γ͜ͷൣғ͔Βࢉग़͞ΕΔɻ 81
֤ࢦඪͷҙຯΛɺ͜ͷൣғͷσʔλΛྫʹ্͛ͯઆ໌͢Δɻ 82
Rootʢฏํࠜʣ Meanʢฏۉʣ Squareʢ2ʣ Errorʢޡࠩʣ ͭ·Γɺ࣮ଌͱ༧ଌͷޡࠩ Λ2ͯ͠ɺͦͷฏۉΛͱΓɺͦ ͷͷฏํࠜΛͱͬͨͷ͜ͱɻ 83 RMSE (Root
Mean Square Error)
22 + 22 + 22 + 42 4
(ͷ) 4 + 4 + 4 + 16 4 7 = 2.65 84 RMSE (Root Mean Square Error) 2 2 4 2 = = ྫ͑ɺ࣮ଌͱ༧ଌͷޡ͕ࠩͦΕ ͧΕ2, 2, 2, 4ͩͬͨͱ͢Δͱɺܭࢉ ҎԼͷΑ͏ʹͳΔɻ
Meanʢฏۉʣ Absoluteʢઈରʣ Errorʢޡࠩʣ ͭ·Γɺ࣮ଌͱ༧ଌͷޡࠩ ͷઈରͷฏۉ͜ͱɻ 85 MAE (Mean Absolute Error)
2 + 2 + 2 + 4 4
(ͷ) 86 ྫ͑ɺ࣮ଌͱ༧ଌͷޡ͕ࠩ ͦΕͧΕ2, 2, 2, 4ͩͬͨͱ͢Δͱɺ ܭࢉҎԼͷΑ͏ʹͳΔɻ = 2.5 MAE (Mean Absolute Error) 2 2 4 2
Meanʢฏۉʣ Absoluteʢઈରʣ Percentageʢׂ߹ʣ Errorʢޡࠩʣ ͭ·Γɺ࣮ଌͱ༧ଌͷޡࠩ ͷׂ߹ͷઈରͷฏۉ͜ͱɻ 87 MAPE (Mean Absolute
Percentage Error)
88 12 13 16 11 ·ͣɺ࣮ଌΛͱΊΔɻ MAPE (Mean Absolute Percentage
Error)
89 ࣍ʹɺ࣮ଌͱ༧ଌͷޡࠩ ΛͱΊΔɻ MAPE (Mean Absolute Percentage Error) 2 2
4 2
90 ࣮ଌͱ༧ଌͷޡࠩΛ࣮ଌͰ ׂͬͯ100Λ͔͚ɺͦΕͧΕͷ ύʔηϯςʔδΛͱΊΔɻ ࣈ͕ϚΠφεͷ߹ɺϚΠφε ͷූ߸ΛͱΔ (ઈର). MAPE (Mean Absolute
Percentage Error) 16.6% 15.4% 25% 18.2%
16.6 + 15.4 + 18.2 + 25 4
(ͷ) 91 ࠷ޙʹɺ͜ΕΒͷͷฏۉΛग़͢ɻ = 18.8% MAPE (Mean Absolute Percentage Error) 16.6% 15.4% 25% 18.2%
• ൺֱର͕ͳ͍ͱɺੑೳΛධՁͮ͠Β͍ͷͰɺ Ҭผʹ༧ଌͯ͠ΈΔɻ • ςετϞʔυͷ··ɺ܁Γฦ͠ʹMarketྻΛࢦ ఆ͢Δɻ Ҭผʹ༧ଌͯ͠ɺ༧ଌੑೳΛൺֱͯ͠ΈΔ 92
Ҭผʹ༧ଌͯ͠ɺ༧ଌੑೳΛൺֱͯ͠ΈΔ 93
Ҭผʹ༧ଌͯ͠ɺ༧ଌੑೳΛൺֱͯ͠ΈΔ 94
95 Ҭผʹ͚ͯΈΔͱɺάϩʔόϧͰͷ2݄ ͷചΓ্͛ͷམͪࠐΈϥςϯɾΞϝϦΧ (LATAM)͔Βདྷ͍ͯͨ͜ͱ͕͔Δɻ 2݄
96 ·ͨɺάϩʔόϧͰͷ11݄ͷ༧Ҏ ্ͷചΓ্͛ΞδΞଠฏ༸Ҭͱ ϥςϯɾΞϝϦΧ͔Βདྷ͍ͯͨ͜ͱ ͕͔Δɻ 11݄ 11݄
97 • ·ͨɺϤʔϩούͷཱ݄̔ͬͯ༧ଌ Λ্ճ͍ͬͯΔɻ • ͜ΕΒͷҬͰͦͷ࣌ʹԿ͕ى͖͍ͯͨ ͷ͔ΛௐΔ͜ͱɺԿ͕ചΓ্͛ʹӨ ڹ͢Δͷ͔ͱ͍͏͍ɺͻ͍ͯ࣍ʹͱ ΔࢪࡦͷώϯτʹͳΔ͔͠Εͳ͍ɻ 8݄
• RMSE, MAEͰݟΔͱɺAfricaͷ΄͏͕Asia PacificΑΓ༧ଌͱ࣮ଌͷ͕ࠩখ ͍͜͞ͱ͕͔Δɻ • ͜ΕΛͬͯɺAfricaͷํ͕Α͘༧ଌͰ͖͍ͯΔͱݴ͑ΔͩΖ͏͔ʁ Ϟσϧͷ༧ଌੑೳͷαϚϦͷදࣔ 98
• Asia Pacificͷํ͕AfricaΑΓച্ֹ͕େ͖͍ͷͰɺRMSE, MAE͕େ͖͘ͳΔͷ ͨΓલͱݴ͑Δɻ • ͷεέʔϧʹ͕ࠩ͋Δͱ͖ɺRMSEɺMAEʹΑΔ༧ଌੑೳͷൺֱҙຯΛ ͳ͞ͳ͍ɻ Ϟσϧͷ༧ଌੑೳͷαϚϦͷදࣔ 99
• MAPEɺ༧ଌͱ࣮ଌͷࠩΛɺ࣮ଌͷύʔηϯτͰදͨ͠ͷͰ͢ɻ • ࣮ଌͷͱͱͷେ͖͞ʹؔͳ͘༧ଌੑೳͷൺֱ͕Ͱ͖Δɻ • RMSE, MAEͷେ͖͔ͬͨAsia Pacificͷ΄͏͕ɺMAPEΑΓখ͘͞ɺ࣮ AfricaΑΓΑ͍༧ଌ͕Ͱ͖͍ͯͨ͜ͱ͕͔Δɻ Ϟσϧͷ༧ଌੑೳͷαϚϦͷදࣔ
100
• MASEɺ༧ଌͱ࣮ଌͷࠩΛɺτϨʔχϯάσʔλͷφΠʔϒ༧ଌͷ݁ՌͱͷൺͰදͨ͠ͷɻ • MAPEಉ༷ɺ࣮ଌͷͱͱͷେ͖͞ʹؔͳ͘༧ଌੑೳͷൺֱ͕Ͱ͖Δɻ • MAPEɺ͕0Λ·͍ͨͩΓɺ0ʹۙ͘ͳΔͱ͖ෆ҆ఆʹͳΓ·͕͢ɺMASEʹ͜ͷͳ͍ɻ • MASEͰݟͯɺRMSE, MAEͷେ͖͔ͬͨAsia Pacificͷ΄͏͕ɺ࣮ΑΓΑ͍༧ଌ͕Ͱ͖͍ͯͨ͜ͱ͕
͔Δɻ Ϟσϧͷ༧ଌੑೳͷαϚϦͷදࣔ 101
102 ΩϟύγςΟ - ্ݶɾԼݶ
103 ݱ࣮తʹୡՄೳͳࣈʹ্ݶɺԼݶ͕͋Δ߹͕͋Δɻ • ίϯόʔγϣϯɺΩϟϯηϧ100ˋΛ͑Δ͜ͱͳ͍ɻ • ΞΫηε̌ΑΓԼʹͳΔ͜ͱͳ͍ɻ ͜ΕΒͷݶքΛߟྀͨ͠༧ଌΛ͢Δ͜ͱ͕Ͱ͖Δɻ ΩϟύγςΟ
্ݶɾԼݶΛઃఆ͢Δ͜ͱ͕Ͱ͖Δ 104
• ্ݶɾԼݶ͕ࢦఆ͞ΕΔͱɺτ ϨϯυϥΠϯɺઢͷΘΓ ʹɺࢦఆ͞Ε্ͨݶɾԼݶΛ࣋ ͭϩδεςΟοΫۂઢͱͳΔɻ • ઢͷͱ͖ͱಉ༷ʹɺ͜ͷτϨ ϯυϥΠϯʹपظɺिपظͳ ͲͷมಈΛՃ͑ͨͷ͕༧ ଌͱͳΔɻ
্ݶɺԼݶΛࢦఆͨ͠߹ͷτϨϯυϥΠϯ 105
• ઢτϨϯυͷ࣌ͱಉ͡Α͏ʹɺ ϩδεςΟοΫۂઢτϨϯυͷ ࣌ɺϩδεςΟοΫۂઢͷ্ ঢʹमਖ਼͕Ճ͑ΒΕ͕ͨνΣ ϯδϙΠϯτͱͳΔɻ • Ճ͑ΒΕͨमਖ਼ͷେ͖͕͞ͷ όʔͰද͞Ε͍ͯΔɻ ্ݶɺԼݶΛࢦఆͨ͠߹ͷνΣϯδϙΠϯτ
106