Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
Amazon Lookout for Vision デモ / 20231208-aws_sem...
Search
kasacchiful
December 08, 2023
Programming
0
550
Amazon Lookout for Vision デモ / 20231208-aws_seminar-02-lookout-vision-demo
2023/12/08 (金)
新潟県工業技術総合研究所様にてデモンストレーションした
Amazon Lookout for Visionの参考資料
kasacchiful
December 08, 2023
Tweet
Share
More Decks by kasacchiful
See All by kasacchiful
Amazon S3 TablesとAmazon S3 Metadataを触ってみた / 20250201-jawsug-tochigi-s3tables-s3metadata
kasacchiful
0
180
Amazon S3 TablesとAmazon S3 Metadataを動かしてみた / 20250125-niigata-5min-tech-lt
kasacchiful
0
19
dbt coreとFargateでデータ変換 / 20240928-jawsug-toyama-hokuriku-shinkansen
kasacchiful
1
96
What we keep in mind when migrating from Serverless Framework to AWS CDK and AWS SAM
kasacchiful
1
350
AWSでIcebergを使ってデータウェアハウスを構築してみる / 20240810-jawsug-akita
kasacchiful
0
42
サーバーレスパターンを元にAWS CDKでデータ基盤を構築する / 20240731_classmethod_odyssey_online_build_a_data_infrastructures_using_aws_cdk_based_on_serverless_patterns
kasacchiful
0
500
AWS IoT 1-clickがサービス終了するので、SORACOMに移行した話 / 20240518-jawsug-niigata-iotlt-niigata
kasacchiful
0
270
AWS Application Composerで始める、 サーバーレスなデータ基盤構築 / 20240406-jawsug-hokuriku-shinkansen
kasacchiful
1
580
AWSの各種サービス紹介と活用方法 − AI・ML活用デモを交えて − / 20231208aws-aiml-seminar
kasacchiful
0
540
Other Decks in Programming
See All in Programming
ファインディLT_ポケモン対戦の定量的分析
fufufukakaka
0
880
『品質』という言葉が嫌いな理由
korimu
0
180
15分で学ぶDuckDBの可愛い使い方 DuckDBの最近の更新
notrogue
1
180
Open source software: how to live long and go far
gaelvaroquaux
0
650
『テスト書いた方が開発が早いじゃん』を解き明かす #phpcon_nagoya
o0h
PRO
6
2.1k
新宿駅構内を三人称視点で探索してみる
satoshi7190
2
110
CloudNativePGを布教したい
nnaka2992
0
100
『GO』アプリ データ基盤のログ収集システムコスト削減
mot_techtalk
0
130
ML.NETで始める機械学習
ymd65536
0
210
Flutter × Firebase Genkit で加速する生成 AI アプリ開発
coborinai
0
160
富山発の個人開発サービスで日本中の学校の業務を改善した話
krpk1900
5
400
DRFを少しずつ オニオンアーキテクチャに寄せていく DjangoCongress JP 2025
nealle
2
200
Featured
See All Featured
"I'm Feeling Lucky" - Building Great Search Experiences for Today's Users (#IAC19)
danielanewman
226
22k
How STYLIGHT went responsive
nonsquared
98
5.4k
Typedesign – Prime Four
hannesfritz
40
2.5k
Adopting Sorbet at Scale
ufuk
74
9.2k
Performance Is Good for Brains [We Love Speed 2024]
tammyeverts
7
640
Understanding Cognitive Biases in Performance Measurement
bluesmoon
27
1.6k
Six Lessons from altMBA
skipperchong
27
3.6k
StorybookのUI Testing Handbookを読んだ
zakiyama
28
5.5k
Measuring & Analyzing Core Web Vitals
bluesmoon
6
250
Navigating Team Friction
lara
183
15k
What’s in a name? Adding method to the madness
productmarketing
PRO
22
3.3k
RailsConf & Balkan Ruby 2019: The Past, Present, and Future of Rails at GitHub
eileencodes
133
33k
Transcript
Amazon Lookout for Vision デモ 2023-12-08
画像分類のデモ クッキーの割れ判別 データはAWSが公開しているサンプル を用います。
1. 画像の収集 「トレーニングデータセット」と「テストデータセット」を用意 画像はPNG形式またはJPEG形式である必要あり
2. 画像のインポート いずれかの方法で画像をインポートします。 今回はS3バケットからインポートします。 ローカルPCからインポート S3バケットからインポート 画像を含むフォルダ名を使用して画像のラベル付けが可能 Amazon SageMaker Ground
Truth マニフェストファイルをインポート
S3バケットに画像をアップロ ード S3バケットを作成します。 20231208-iri-lookout- vision-demo-kasahara とい う名前のバケットを作りまし た。
S3バケットに画像をアップロード バケットに画像をアップロードします。 以下のフォルダに分けてアップロード assets/train/normal/ assets/train/anomaly/ assets/test/normal/ assets/test/anomaly/
プロジェクトを作成 Amazon Lookout for Visionのプロジェクトを作成します。 左側メニューの「プロジェクト」から「プロジェクトを作成」をクリック プロジェクト名を適宜入力して「プロジェクトを作成」をクリック 例: 20231208-iri-lookout-vision-demo 「データセットを作成」をクリック
データセットを作成 データセットを作成の画面で以下のように設定する 「トレーニングデータセットとテストデータセットを作成する」を選択 「トレーニングデータセットの詳細」では「S3バケットからイメージをインポート する」を選択 S3 URIは以下のように設定する s3://< バケット名>/train までのフォルダパス/
例: s3://20231208-iri-lookout-vision-demo- kasahara/assets/train/ 自動ラベル付けは「フォルダ名に基づいてイメージに自動的にラベルをアタッチ」 にチェックをいれる
「データセットの詳細をテストする」では「S3バケットからイメージをインポートす る」を選択 S3 URIは以下のように設定する s3://< バケット名>/test までのフォルダパス/ 例: s3://20231208-iri-lookout-vision-demo-kasahara/assets/test/ 自動ラベル付けは「フォルダ名に基づいてイメージに自動的にラベルをアタッチ」にチ
ェックをいれる
「データセットを作成」ボタンをクリックする この時、S3バケットにまだバケットポリシーを設定してない場合は、ブラウザの別 タブで開いたS3の設定画面にてバケットポリシーを設定します。
データセットに「トレーニング」 と「テスト」の画像が登録されて いることを確認ください。
テスト用の異常画像を追加してラベル付け Amazon Lookout for Visionの画像分類では、トレーニング・テストの各分類において少なく ても10枚以上の画像が必要です。 サンプルで用意された画像は、テスト用の異常画像が8枚しか用意されていないため、追加で 2枚登録する必要があります。 今回はデモなので、トレーニング用の異常画像の中から2枚コピーして使おうと思います。
「アクション」から「テストデータセットを追加します」をクリックします。 トレーニング用の異常画像の中から2枚選択して、「画像をアップロード」をクリックし ます。 アップロードした画像はテスト用のところにあります。これらの画像を「異常として分 類」を設定します。 本来なら、テスト用にアップロードしたトレーニング用の異常画像は、トレーニング用の異 常画像から除いた状態でトレーニングすべきですが、今回はデモなので、このままトレーニ ングに使用します。
モデルのトレーニング データセットの画面から「モデルをトレーニング」ボタンをクリックします。 デフォルトのまま、「モデルをトレーニング」ボタンをクリックします。 「モデルをトレーニングしますか?」と表示されるので、「モデルをトレーニング」を クリックします。
モデルのトレーニングが始まりま した。トレーニング終了までしば らく待ちます。
モデルのトレーニングが完了しま した。
モデルの評価 トレーニングが完了したモデルのリンクをクリックします。 評価指標が表示されています。 Rekognitionより、詳細な結果が確認できます。 評価が悪い場合は、データセットの画像を増やす等の対応をしてモデルの再トレーニン グしてください。
モデルを使った推論 Amazon Lookout for Visionでは、APIサーバによる推論のほか、エッジデバイス側での推論 もサポートしています。 エッジデバイス側の推論では、AWS IoT Greengrass用のパッケージが作成されますので、 エッジデバイス側ではAWS
IoT Greengrassのライブラリを用いて推論します。 今回のデモは、APIサーバによる推論を実施します。 まず推論用のAPIサーバをAWS CLIまたはAWS SDKを使って立ち上げます。 その後、AWS CLIまたはAWS SDKを使って、画像の分類を行います。
推論用APIサーバの立ち上げ 「モデルを使用」をクリックし、「APIをクラウドに統合」をクリックします。 AWS CLIコマンドが表示されます。「モデルを開始」のCLIコマンド文字列をコピーし て、ターミナルで実行します。 aws lookoutvision start-model \ --project-name
20231208-iri-lookout-vision-demo \ --model-version 1 \ --min-inference-units 1 ## 出力結果 { "Status": "STARTING_HOSTING" }
モデルパフォーマンスメトリクスのステータスでは、「ホスティングを開始中」になっ ています。 ステータスが「ホスト済み」になるまで待ちます。 CLIでも確認できます。 aws lookoutvision describe-model \ --project-name 20231208-iri-lookout-vision-demo
\ --model-version 1
## 出力結果 { "ModelDescription": { "ModelVersion": "1", "ModelArn": "arn:aws:lookoutvision:ap-northeast-1:660035202545:model/20231208-iri-lookout-vision-demo/1", "CreationTimestamp":
"2023-12-07T13:50:39.990000+09:00", "Status": "HOSTED", "StatusMessage": "The model is running.", "Performance": { "F1Score": 1.0, "Recall": 1.0, "Precision": 1.0 }, "OutputConfig": { "S3Location": { "Bucket": "lookoutvision-ap-northeast-1-e5a7733458", "Prefix": "projects/20231208-iri-lookout-vision-demo/models/" } }, "EvaluationManifest": { "Bucket": "lookoutvision-ap-northeast-1-e5a7733458", "Key": "projects/20231208-iri-lookout-vision-demo/models/EvaluationManifest-20231208-iri-lookout-vision-demo-1.json" }, "EvaluationResult": { "Bucket": "lookoutvision-ap-northeast-1-e5a7733458", "Key": "projects/20231208-iri-lookout-vision-demo/models/EvaluationResult-20231208-iri-lookout-vision-demo-1.json" }, "EvaluationEndTimestamp": "2023-12-07T14:09:24.886000+09:00" } }
画像の分類 「モデルを使用」をクリックし、「APIをクラウドに統合」をクリックします。 AWS CLIコマンドが表示されます。「モデルを停止」のCLIコマンド文字列をコピーし て、ターミナルで実行します。 --body には、ローカルにある画像のパスを指定します。 aws lookoutvision detect-anomalies
\ --project-name 20231208-iri-lookout-vision-demo \ --model-version 1 \ --content-type image/jpeg \ --body /path/to/image.jpeg PNG画像の場合、 --content-type の値は image/png となります。
例1: aws lookoutvision detect-anomalies \ --project-name 20231208-iri-lookout-vision-demo \ --model-version 1
\ --content-type image/jpeg \ --body ./test-normal-1.jpg 結果: { "DetectAnomalyResult": { "Source": { "Type": "direct" }, "IsAnomalous": false, "Confidence": 0.9268283843994141 } }
例2: aws lookoutvision detect-anomalies \ --project-name 20231208-iri-lookout-vision-demo \ --model-version 1
\ --content-type image/jpeg \ --body ./test-anomaly-1.jpg 結果: { "DetectAnomalyResult": { "Source": { "Type": "direct" }, "IsAnomalous": true, "Confidence": 0.9038475751876831 } }
推論サーバの停止 「モデルを使用」をクリックし、「APIをクラウドに統合」をクリックします。 AWS CLIコマンドが表示されます。「モデルを停止」のCLIコマンド文字列をコピーし て、ターミナルで実行します。 aws lookoutvision stop-model \ --project-name
20231208-iri-lookout-vision-demo \ --model-version 1 ## 出力結果 { "Status": "STOPPING_HOSTING" }
ステータスが「トレーニングが完了しました」になれば、APIホスティングは終了しまし た。
参考 Getting started with Amazon Lookout for Vision - Amazon
Lookout for Vision 使用したサンプル画像