Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
Amazon Lookout for Vision デモ / 20231208-aws_sem...
Search
kasacchiful
December 08, 2023
Programming
0
630
Amazon Lookout for Vision デモ / 20231208-aws_seminar-02-lookout-vision-demo
2023/12/08 (金)
新潟県工業技術総合研究所様にてデモンストレーションした
Amazon Lookout for Visionの参考資料
kasacchiful
December 08, 2023
Tweet
Share
More Decks by kasacchiful
See All by kasacchiful
ワイがおすすめする新潟の食 / 20250912jasst-niigata-lt
kasacchiful
0
17
WorkersでDiscord botを試してみた / 20250822workers-tech-talk-niigata
kasacchiful
1
38
地域コミュニティへの「感謝」と「恩返し」 / 20250726jawsug-tochigi
kasacchiful
0
160
Amazon Q Developer for CLI を使って PHP Conference 新潟 2025 参加者向けにグルメサイトを構築した話 / 20250620niigata-5min-tech
kasacchiful
1
98
ワイがおすすめする新潟の食 / 20250530phpconf-niigata-eve
kasacchiful
0
400
生成AIでメタデータを生成してみた / 20250525generate-metadata-using-generative-ai
kasacchiful
0
81
Strands Agents SDK で AIエージェント作成 を試してみた / 20250525strands-agents
kasacchiful
0
300
いろんな世界を見てみよう / 20250508ninno_tech_fest
kasacchiful
0
43
Amazon Q Developer for CLIのある生活 / 20250427ai_craft_hacks_niigata1
kasacchiful
1
100
Other Decks in Programming
See All in Programming
250830 IaCの選定~AWS SAMのLambdaをECSに乗り換えたときの備忘録~
east_takumi
0
400
Zendeskのチケットを Amazon Bedrockで 解析した
ryokosuge
3
320
1から理解するWeb Push
dora1998
7
1.9k
ぬるぬる動かせ! Riveでアニメーション実装🐾
kno3a87
1
230
Deep Dive into Kotlin Flow
jmatsu
1
370
もうちょっといいRubyプロファイラを作りたい (2025)
osyoyu
1
450
AIを活用し、今後に備えるための技術知識 / Basic Knowledge to Utilize AI
kishida
22
5.9k
時間軸から考えるTerraformを使う理由と留意点
fufuhu
16
4.8k
ProxyによるWindow間RPC機構の構築
syumai
3
1.2k
go test -json そして testing.T.Attr / Kyoto.go #63
utgwkk
3
310
Android端末で実現するオンデバイスLLM 2025
masayukisuda
1
170
為你自己學 Python - 冷知識篇
eddie
1
350
Featured
See All Featured
Fight the Zombie Pattern Library - RWD Summit 2016
marcelosomers
234
17k
Templates, Plugins, & Blocks: Oh My! Creating the theme that thinks of everything
marktimemedia
31
2.5k
How GitHub (no longer) Works
holman
315
140k
Responsive Adventures: Dirty Tricks From The Dark Corners of Front-End
smashingmag
252
21k
CoffeeScript is Beautiful & I Never Want to Write Plain JavaScript Again
sstephenson
162
15k
How to Ace a Technical Interview
jacobian
279
23k
The Illustrated Children's Guide to Kubernetes
chrisshort
48
50k
JavaScript: Past, Present, and Future - NDC Porto 2020
reverentgeek
52
5.6k
RailsConf 2023
tenderlove
30
1.2k
The Cost Of JavaScript in 2023
addyosmani
53
8.9k
Keith and Marios Guide to Fast Websites
keithpitt
411
22k
Making Projects Easy
brettharned
117
6.4k
Transcript
Amazon Lookout for Vision デモ 2023-12-08
画像分類のデモ クッキーの割れ判別 データはAWSが公開しているサンプル を用います。
1. 画像の収集 「トレーニングデータセット」と「テストデータセット」を用意 画像はPNG形式またはJPEG形式である必要あり
2. 画像のインポート いずれかの方法で画像をインポートします。 今回はS3バケットからインポートします。 ローカルPCからインポート S3バケットからインポート 画像を含むフォルダ名を使用して画像のラベル付けが可能 Amazon SageMaker Ground
Truth マニフェストファイルをインポート
S3バケットに画像をアップロ ード S3バケットを作成します。 20231208-iri-lookout- vision-demo-kasahara とい う名前のバケットを作りまし た。
S3バケットに画像をアップロード バケットに画像をアップロードします。 以下のフォルダに分けてアップロード assets/train/normal/ assets/train/anomaly/ assets/test/normal/ assets/test/anomaly/
プロジェクトを作成 Amazon Lookout for Visionのプロジェクトを作成します。 左側メニューの「プロジェクト」から「プロジェクトを作成」をクリック プロジェクト名を適宜入力して「プロジェクトを作成」をクリック 例: 20231208-iri-lookout-vision-demo 「データセットを作成」をクリック
データセットを作成 データセットを作成の画面で以下のように設定する 「トレーニングデータセットとテストデータセットを作成する」を選択 「トレーニングデータセットの詳細」では「S3バケットからイメージをインポート する」を選択 S3 URIは以下のように設定する s3://< バケット名>/train までのフォルダパス/
例: s3://20231208-iri-lookout-vision-demo- kasahara/assets/train/ 自動ラベル付けは「フォルダ名に基づいてイメージに自動的にラベルをアタッチ」 にチェックをいれる
「データセットの詳細をテストする」では「S3バケットからイメージをインポートす る」を選択 S3 URIは以下のように設定する s3://< バケット名>/test までのフォルダパス/ 例: s3://20231208-iri-lookout-vision-demo-kasahara/assets/test/ 自動ラベル付けは「フォルダ名に基づいてイメージに自動的にラベルをアタッチ」にチ
ェックをいれる
「データセットを作成」ボタンをクリックする この時、S3バケットにまだバケットポリシーを設定してない場合は、ブラウザの別 タブで開いたS3の設定画面にてバケットポリシーを設定します。
データセットに「トレーニング」 と「テスト」の画像が登録されて いることを確認ください。
テスト用の異常画像を追加してラベル付け Amazon Lookout for Visionの画像分類では、トレーニング・テストの各分類において少なく ても10枚以上の画像が必要です。 サンプルで用意された画像は、テスト用の異常画像が8枚しか用意されていないため、追加で 2枚登録する必要があります。 今回はデモなので、トレーニング用の異常画像の中から2枚コピーして使おうと思います。
「アクション」から「テストデータセットを追加します」をクリックします。 トレーニング用の異常画像の中から2枚選択して、「画像をアップロード」をクリックし ます。 アップロードした画像はテスト用のところにあります。これらの画像を「異常として分 類」を設定します。 本来なら、テスト用にアップロードしたトレーニング用の異常画像は、トレーニング用の異 常画像から除いた状態でトレーニングすべきですが、今回はデモなので、このままトレーニ ングに使用します。
モデルのトレーニング データセットの画面から「モデルをトレーニング」ボタンをクリックします。 デフォルトのまま、「モデルをトレーニング」ボタンをクリックします。 「モデルをトレーニングしますか?」と表示されるので、「モデルをトレーニング」を クリックします。
モデルのトレーニングが始まりま した。トレーニング終了までしば らく待ちます。
モデルのトレーニングが完了しま した。
モデルの評価 トレーニングが完了したモデルのリンクをクリックします。 評価指標が表示されています。 Rekognitionより、詳細な結果が確認できます。 評価が悪い場合は、データセットの画像を増やす等の対応をしてモデルの再トレーニン グしてください。
モデルを使った推論 Amazon Lookout for Visionでは、APIサーバによる推論のほか、エッジデバイス側での推論 もサポートしています。 エッジデバイス側の推論では、AWS IoT Greengrass用のパッケージが作成されますので、 エッジデバイス側ではAWS
IoT Greengrassのライブラリを用いて推論します。 今回のデモは、APIサーバによる推論を実施します。 まず推論用のAPIサーバをAWS CLIまたはAWS SDKを使って立ち上げます。 その後、AWS CLIまたはAWS SDKを使って、画像の分類を行います。
推論用APIサーバの立ち上げ 「モデルを使用」をクリックし、「APIをクラウドに統合」をクリックします。 AWS CLIコマンドが表示されます。「モデルを開始」のCLIコマンド文字列をコピーし て、ターミナルで実行します。 aws lookoutvision start-model \ --project-name
20231208-iri-lookout-vision-demo \ --model-version 1 \ --min-inference-units 1 ## 出力結果 { "Status": "STARTING_HOSTING" }
モデルパフォーマンスメトリクスのステータスでは、「ホスティングを開始中」になっ ています。 ステータスが「ホスト済み」になるまで待ちます。 CLIでも確認できます。 aws lookoutvision describe-model \ --project-name 20231208-iri-lookout-vision-demo
\ --model-version 1
## 出力結果 { "ModelDescription": { "ModelVersion": "1", "ModelArn": "arn:aws:lookoutvision:ap-northeast-1:660035202545:model/20231208-iri-lookout-vision-demo/1", "CreationTimestamp":
"2023-12-07T13:50:39.990000+09:00", "Status": "HOSTED", "StatusMessage": "The model is running.", "Performance": { "F1Score": 1.0, "Recall": 1.0, "Precision": 1.0 }, "OutputConfig": { "S3Location": { "Bucket": "lookoutvision-ap-northeast-1-e5a7733458", "Prefix": "projects/20231208-iri-lookout-vision-demo/models/" } }, "EvaluationManifest": { "Bucket": "lookoutvision-ap-northeast-1-e5a7733458", "Key": "projects/20231208-iri-lookout-vision-demo/models/EvaluationManifest-20231208-iri-lookout-vision-demo-1.json" }, "EvaluationResult": { "Bucket": "lookoutvision-ap-northeast-1-e5a7733458", "Key": "projects/20231208-iri-lookout-vision-demo/models/EvaluationResult-20231208-iri-lookout-vision-demo-1.json" }, "EvaluationEndTimestamp": "2023-12-07T14:09:24.886000+09:00" } }
画像の分類 「モデルを使用」をクリックし、「APIをクラウドに統合」をクリックします。 AWS CLIコマンドが表示されます。「モデルを停止」のCLIコマンド文字列をコピーし て、ターミナルで実行します。 --body には、ローカルにある画像のパスを指定します。 aws lookoutvision detect-anomalies
\ --project-name 20231208-iri-lookout-vision-demo \ --model-version 1 \ --content-type image/jpeg \ --body /path/to/image.jpeg PNG画像の場合、 --content-type の値は image/png となります。
例1: aws lookoutvision detect-anomalies \ --project-name 20231208-iri-lookout-vision-demo \ --model-version 1
\ --content-type image/jpeg \ --body ./test-normal-1.jpg 結果: { "DetectAnomalyResult": { "Source": { "Type": "direct" }, "IsAnomalous": false, "Confidence": 0.9268283843994141 } }
例2: aws lookoutvision detect-anomalies \ --project-name 20231208-iri-lookout-vision-demo \ --model-version 1
\ --content-type image/jpeg \ --body ./test-anomaly-1.jpg 結果: { "DetectAnomalyResult": { "Source": { "Type": "direct" }, "IsAnomalous": true, "Confidence": 0.9038475751876831 } }
推論サーバの停止 「モデルを使用」をクリックし、「APIをクラウドに統合」をクリックします。 AWS CLIコマンドが表示されます。「モデルを停止」のCLIコマンド文字列をコピーし て、ターミナルで実行します。 aws lookoutvision stop-model \ --project-name
20231208-iri-lookout-vision-demo \ --model-version 1 ## 出力結果 { "Status": "STOPPING_HOSTING" }
ステータスが「トレーニングが完了しました」になれば、APIホスティングは終了しまし た。
参考 Getting started with Amazon Lookout for Vision - Amazon
Lookout for Vision 使用したサンプル画像