Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
[Journal club] LambdaNetworks: Modeling Long-R...
Search
Sponsored
·
SiteGround - Reliable hosting with speed, security, and support you can count on.
→
Semantic Machine Intelligence Lab., Keio Univ.
PRO
September 03, 2021
Technology
0
230
[Journal club] LambdaNetworks: Modeling Long-Range Interactions Without Attention
Semantic Machine Intelligence Lab., Keio Univ.
PRO
September 03, 2021
Tweet
Share
More Decks by Semantic Machine Intelligence Lab., Keio Univ.
See All by Semantic Machine Intelligence Lab., Keio Univ.
FlowAR: Scale-wise Autoregressive Image Generation Meets Flow Matching
keio_smilab
PRO
0
4
[Journal club] VLA-Adapter: An Effective Paradigm for Tiny-Scale Vision-Language-Action Model
keio_smilab
PRO
0
71
[Journal club] Improved Mean Flows: On the Challenges of Fastforward Generative Models
keio_smilab
PRO
0
140
[Journal club] MemER: Scaling Up Memory for Robot Control via Experience Retrieval
keio_smilab
PRO
0
88
[Journal club] Flow Matching for Generative Modeling
keio_smilab
PRO
1
340
Multimodal AI Driving Solutions to Societal Challenges
keio_smilab
PRO
2
210
[Journal club] Re-thinking Temporal Search for Long-Form Video Understanding
keio_smilab
PRO
0
48
[Journal club] Focusing on What Matters: Object-Agent-centric Tokenization for Vision Language Action Models
keio_smilab
PRO
0
22
[Journal club] EXPERT: An Explainable Image Captioning Evaluation Metric with Structured Explanations
keio_smilab
PRO
0
75
Other Decks in Technology
See All in Technology
プロダクト成長を支える開発基盤とスケールに伴う課題
yuu26
4
1.4k
Claude_CodeでSEOを最適化する_AI_Ops_Community_Vol.2__マーケティングx_AIはここまで進化した.pdf
riku_423
2
610
【Oracle Cloud ウェビナー】[Oracle AI Database + AWS] Oracle Database@AWSで広がるクラウドの新たな選択肢とAI時代のデータ戦略
oracle4engineer
PRO
2
180
M&A 後の統合をどう進めるか ─ ナレッジワーク × Poetics が実践した組織とシステムの融合
kworkdev
PRO
1
510
Embedded SREの終わりを設計する 「なんとなく」から計画的な自立支援へ
sansantech
PRO
3
2.6k
OCI Database Management サービス詳細
oracle4engineer
PRO
1
7.4k
OWASP Top 10:2025 リリースと 少しの日本語化にまつわる裏話
okdt
PRO
3
850
ブロックテーマ、WordPress でウェブサイトをつくるということ / 2026.02.07 Gifu WordPress Meetup
torounit
0
200
顧客の言葉を、そのまま信じない勇気
yamatai1212
1
360
Oracle Base Database Service 技術詳細
oracle4engineer
PRO
15
93k
旅先で iPad + Neovim で iOS 開発・執筆した話
zozotech
PRO
0
100
Context Engineeringが企業で不可欠になる理由
hirosatogamo
PRO
3
670
Featured
See All Featured
How to Build an AI Search Optimization Roadmap - Criteria and Steps to Take #SEOIRL
aleyda
1
1.9k
Avoiding the “Bad Training, Faster” Trap in the Age of AI
tmiket
0
79
Hiding What from Whom? A Critical Review of the History of Programming languages for Music
tomoyanonymous
2
430
Joys of Absence: A Defence of Solitary Play
codingconduct
1
290
AI in Enterprises - Java and Open Source to the Rescue
ivargrimstad
0
1.1k
Organizational Design Perspectives: An Ontology of Organizational Design Elements
kimpetersen
PRO
1
470
[RailsConf 2023 Opening Keynote] The Magic of Rails
eileencodes
31
9.9k
Marketing Yourself as an Engineer | Alaka | Gurzu
gurzu
0
130
Dominate Local Search Results - an insider guide to GBP, reviews, and Local SEO
greggifford
PRO
0
79
10 Git Anti Patterns You Should be Aware of
lemiorhan
PRO
659
61k
Sam Torres - BigQuery for SEOs
techseoconnect
PRO
0
190
Everyday Curiosity
cassininazir
0
130
Transcript
-BNCEB/FUXPSLT .PEFMJOH-POH3BOHF*OUFSBDUJPOT 8JUIPVU"UUFOUJPO 慶應義塾大学 杉浦孔明研究室 飯田 紡 Irwan Bello (Google)
ICLR 2021 Bello, I. (2021). Lambdanetworks: Modeling long-range interactions without attention. arXiv preprint arXiv:2102.08602.
എܠɿ"UUFOUJPOͷܭࢉྔଟ͍ Self-Attention シーケンス長 ! -> "(!!) 画像をFlattenして入力する場合 画像全体を入力は困難(256×256 → 256")
わずかな部分しか入力不可 画像全体との関係を捉えられない 1 I have a pen I 0.5 0.2 0.1 0.2 have 0.1 0.4 0.1 0.4 a 0.2 0.1 0.5 0.2 pen 0.2 0.2 0.1 0.5
ؔ࿈ݚڀ Attentionの計算量削減手法は汎用的 画像特有の構造を考慮しつつ画像全体を入力したい 2 Linear Transformer [Katharopoulos+, ICML20] Transformerを低ランク近似することで計算量削減 [Shazeer,
arXiv preprint19] Queryを分割することでattentionの計算量削減 ViT [Dosovitskiy+, arXiv preprint21] パッチ入力により画像にTransformerを適用 パッチは高解像度の画像やdetectionに応用できるか不明
ఏҊख๏ɿ-BNCEB/FUXPSLT 3 入力 Inputs: ! ∈ ℝ!×# Context: $
∈ ℝ$×# ! = $のときSelf-attentionと同等 出力 & ∈ ℝ!×# ': Query, (: Key, ): Value ' = !*% , ( = $*& , ) = $*' + Content Lambda Position Lambdas * ! + , - . / 0# = 2# $3# = 2% + 2# & $ 3# 5 = 2' , 2! , ⋯ , 2( 2# = 2% + 2# &
ఏҊख๏ɿ$POUFOU-BNCEB Attentionに対応 Key, Valueを集約後Queryに作用 → 計算量削減 4 + Position Lambdas
Content Lambda * ! + - . /
"UUFOUJPOͱ$POUFOU-BNCEBͷൺֱ 5 +(×* *+×* /(×, -!×# -+×, .+×* -!×# -!×!
8(×+ 9 8(×+ soft max ,(×* !, #の積でAttention map を作成 画像データでは一般に データ長 $, % : 大 &, ' ∶ 小さくできる(ハイパラ) 大きな ! × : を使用せずに ! × ; の出力できないか? Attention Layer
"UUFOUJPOͱ$POUFOU-BNCEBͷൺֱ 6 画像データでは一般に データ長 :, ! : 大 ;, <
∶ 小さくできる(ハイパラ) -, .の積で5%を作成 ! × : → k × ; Content Lambda +(×* *+×* /(×, -!×# -+×, .+×* -!×# -!×! ,(×* soft max ? -+×, 5% ,×* ※正確には.$と同じ/×0の Position Lambdasを足したものを1にかける
"UUFOUJPOͱ$POUFOU-BNCEBͷൺֱ 7 /(×, -+×, .+×* 8(×+ 9 8(×+ soft max
,(×* /(×, -+×, .+×* ,(×* soft max ? -+×, 5% ,×* " !:(< + ; ) " ! + : <; Attention Layer Content Lambda 2×3, 3×5行列の積は6(235) 時間計算量 空間計算量 " !: " <; ((*+)などもありえますが 後にO +. しか使わないので省略
ఏҊख๏ɿ1PTJUJPO-BNCEBT Positional Encodingに対応 ポジション1つ(1〜,)につき -×/の行列0を使用 0は全てのデータで同じ 時間計算量 1(,-/3) 空間計算量 1(,-/)
8 + Content Lambda Position Lambdas * ! + , - . / . +×* @' +×, 5' & ,×* 5! & ,×* 5( & ,×* … @( +×, …
ܭࢉྔͷൺֱ 9 時間計算量 空間計算量 Attention 6(9:; / + 0 )
6(9:;) Content only 6( : + ; /0) 6(9/0) Position only 6(9:;/0) 6(:;/) Lambda 6(9:;/0) 6(:;/ + 9:/0) 入力サイズ %×& , $×& バッチサイズ * !, #の大きさ ' 時間計算量 ほぼ等しい(工夫で高速化可能) 空間計算量 Positionは全部同じ → *に非依存 = 大きな%$がバッチサイズ非依存 → バッチサイズを大きくできる 画像サイズ224 × 224, バッチサイズ 128 Attention: 120 GB Lambda: 0.63 GB
ߴԽͷ Multi-Query Queryをℎ 個に分割 ! = [!! , !"
, ⋯ , !# ] 並列にlambdaを計算して結合 0 = 1 !! , 1 !" , ⋯ , 1 !# % → $ # より時間計算量 3 %$&'( # に(Key, Valueはそのまま) Lambda Convolution 計算量の多いPosition LambdasをCNNに置き換え 4) &×' = Conv2D(<) 11
ఆྔత݁Ռɿ-BNCEB͕BUUFOUJPO$//Λ্ճΔ 12 ResNet50の3 × 3Convを Layerに置き換え ImageNetの 224 ×224画像を使用 最も少ないパラメータ数で
Top-1 accuracy最大を達成
ఆྔత݁Ռɿܭࢉྔগ͔ͭਫ਼ྑ 13 Lambda Layerは • メモリ使用量 少 • Throughput 大
全レイヤーでpos lambdasを 共有しても精度は落ちない Attentionでは画像全体を使 用できない(Global ~) 9 ∶ バッチサイズ, ℎ ∶ ヘッド/クエリ数, : ∶ inputの長さ ; ∶ contextの長さ, / ∶ Q, Kのdepth, ? ∶ レイヤー数 画像全体 軸ごと クロップ
ఆྔత݁Ռɿগͳ͍ύϥϝʔλ͔ͭߴͰେܕϞσϧʹ ඖఢ͢Δਫ਼Λୡ 14 横軸:Trainにかかる時間 ≒ モデルサイズ LambdaResNet420, 画像サイズ320 LambdaResNet350, 画像サイズ320
350 epochの訓練をしたとき 3〜4倍高速でEfficientNetに匹敵 ViTには劣るものの、非常に高速
"CMBUJPO4UVEJFT 16 Content, Position片方のみを使用 Positionが精度に大きく貢献 ConvとLambdaの併用 前方にL → Throughput低下 後方にL
→ Throughputそのまま 後ろ2つL → 精度向上かつ高速
·ͱΊ 17 背景 Attentionの計算量削減 提案 先にKey, ValueをまとめるLambda Networks 結果 高速かつ大規模モデルに匹敵する精度