$30 off During Our Annual Pro Sale. View Details »
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
[Journal club] LambdaNetworks: Modeling Long-R...
Search
Semantic Machine Intelligence Lab., Keio Univ.
PRO
September 03, 2021
Technology
0
230
[Journal club] LambdaNetworks: Modeling Long-Range Interactions Without Attention
Semantic Machine Intelligence Lab., Keio Univ.
PRO
September 03, 2021
Tweet
Share
More Decks by Semantic Machine Intelligence Lab., Keio Univ.
See All by Semantic Machine Intelligence Lab., Keio Univ.
[Journal club] MemER: Scaling Up Memory for Robot Control via Experience Retrieval
keio_smilab
PRO
0
42
[Journal club] Flow Matching for Generative Modeling
keio_smilab
PRO
0
280
Multimodal AI Driving Solutions to Societal Challenges
keio_smilab
PRO
2
160
[Journal club] Re-thinking Temporal Search for Long-Form Video Understanding
keio_smilab
PRO
0
31
[Journal club] EXPERT: An Explainable Image Captioning Evaluation Metric with Structured Explanations
keio_smilab
PRO
0
64
[Journal club] FreeTimeGS: Free Gaussian Primitives at Anytime and Anywhere for Dynamic Scene Reconstruction
keio_smilab
PRO
0
91
[Journal club] Thinking in Space: How Multimodal Large Language Models See, Remember, and Recall Spaces
keio_smilab
PRO
0
150
[Journal club] GraphEQA: Using 3D Semantic Scene Graphs for Real-time Embodied Question Answering
keio_smilab
PRO
0
84
[RSJ25] Feasible RAG: Hierarchical Multimodal Retrieval with Feasibility-Aware Embodied Memory for Mobile Manipulation
keio_smilab
PRO
0
190
Other Decks in Technology
See All in Technology
Amazon Connect アップデート! AIエージェントにMCPツールを設定してみた!
ysuzuki
0
120
「もしもデータ基盤開発で『強くてニューゲーム』ができたなら今の僕はどんなデータ基盤を作っただろう」
aeonpeople
0
150
フィッシュボウルのやり方 / How to do a fishbowl
pauli
2
350
Building Serverless AI Memory with Mastra × AWS
vvatanabe
0
200
意外と知らない状態遷移テストの世界
nihonbuson
PRO
1
150
ペアーズにおけるAIエージェント 基盤とText to SQLツールの紹介
hisamouna
2
1.3k
AWSの新機能をフル活用した「re:Inventエージェント」開発秘話
minorun365
2
320
プロンプトやエージェントを自動的に作る方法
shibuiwilliam
15
16k
re:Invent2025 3つの Frontier Agents を紹介 / introducing-3-frontier-agents
tomoki10
0
350
【開発を止めるな】機能追加と並行して進めるアーキテクチャ改善/Keep Shipping: Architecture Improvements Without Pausing Dev
bitkey
PRO
1
110
Strands Agents × インタリーブ思考 で変わるAIエージェント設計 / Strands Agents x Interleaved Thinking AI Agents
takanorig
4
1.7k
CARTAのAI CoE が挑む「事業を進化させる AI エンジニアリング」 / carta ai coe evolution business ai engineering
carta_engineering
0
2.2k
Featured
See All Featured
The B2B funnel & how to create a winning content strategy
katarinadahlin
PRO
0
180
How Software Deployment tools have changed in the past 20 years
geshan
0
29k
Navigating the Design Leadership Dip - Product Design Week Design Leaders+ Conference 2024
apolaine
0
110
Lightning talk: Run Django tests with GitHub Actions
sabderemane
0
89
Impact Scores and Hybrid Strategies: The future of link building
tamaranovitovic
0
170
jQuery: Nuts, Bolts and Bling
dougneiner
65
8.3k
Discover your Explorer Soul
emna__ayadi
2
1k
Designing for Timeless Needs
cassininazir
0
87
DevOps and Value Stream Thinking: Enabling flow, efficiency and business value
helenjbeal
1
65
A Guide to Academic Writing Using Generative AI - A Workshop
ks91
PRO
0
160
The Illustrated Guide to Node.js - THAT Conference 2024
reverentgeek
0
210
The Illustrated Children's Guide to Kubernetes
chrisshort
51
51k
Transcript
-BNCEB/FUXPSLT .PEFMJOH-POH3BOHF*OUFSBDUJPOT 8JUIPVU"UUFOUJPO 慶應義塾大学 杉浦孔明研究室 飯田 紡 Irwan Bello (Google)
ICLR 2021 Bello, I. (2021). Lambdanetworks: Modeling long-range interactions without attention. arXiv preprint arXiv:2102.08602.
എܠɿ"UUFOUJPOͷܭࢉྔଟ͍ Self-Attention シーケンス長 ! -> "(!!) 画像をFlattenして入力する場合 画像全体を入力は困難(256×256 → 256")
わずかな部分しか入力不可 画像全体との関係を捉えられない 1 I have a pen I 0.5 0.2 0.1 0.2 have 0.1 0.4 0.1 0.4 a 0.2 0.1 0.5 0.2 pen 0.2 0.2 0.1 0.5
ؔ࿈ݚڀ Attentionの計算量削減手法は汎用的 画像特有の構造を考慮しつつ画像全体を入力したい 2 Linear Transformer [Katharopoulos+, ICML20] Transformerを低ランク近似することで計算量削減 [Shazeer,
arXiv preprint19] Queryを分割することでattentionの計算量削減 ViT [Dosovitskiy+, arXiv preprint21] パッチ入力により画像にTransformerを適用 パッチは高解像度の画像やdetectionに応用できるか不明
ఏҊख๏ɿ-BNCEB/FUXPSLT 3 入力 Inputs: ! ∈ ℝ!×# Context: $
∈ ℝ$×# ! = $のときSelf-attentionと同等 出力 & ∈ ℝ!×# ': Query, (: Key, ): Value ' = !*% , ( = $*& , ) = $*' + Content Lambda Position Lambdas * ! + , - . / 0# = 2# $3# = 2% + 2# & $ 3# 5 = 2' , 2! , ⋯ , 2( 2# = 2% + 2# &
ఏҊख๏ɿ$POUFOU-BNCEB Attentionに対応 Key, Valueを集約後Queryに作用 → 計算量削減 4 + Position Lambdas
Content Lambda * ! + - . /
"UUFOUJPOͱ$POUFOU-BNCEBͷൺֱ 5 +(×* *+×* /(×, -!×# -+×, .+×* -!×# -!×!
8(×+ 9 8(×+ soft max ,(×* !, #の積でAttention map を作成 画像データでは一般に データ長 $, % : 大 &, ' ∶ 小さくできる(ハイパラ) 大きな ! × : を使用せずに ! × ; の出力できないか? Attention Layer
"UUFOUJPOͱ$POUFOU-BNCEBͷൺֱ 6 画像データでは一般に データ長 :, ! : 大 ;, <
∶ 小さくできる(ハイパラ) -, .の積で5%を作成 ! × : → k × ; Content Lambda +(×* *+×* /(×, -!×# -+×, .+×* -!×# -!×! ,(×* soft max ? -+×, 5% ,×* ※正確には.$と同じ/×0の Position Lambdasを足したものを1にかける
"UUFOUJPOͱ$POUFOU-BNCEBͷൺֱ 7 /(×, -+×, .+×* 8(×+ 9 8(×+ soft max
,(×* /(×, -+×, .+×* ,(×* soft max ? -+×, 5% ,×* " !:(< + ; ) " ! + : <; Attention Layer Content Lambda 2×3, 3×5行列の積は6(235) 時間計算量 空間計算量 " !: " <; ((*+)などもありえますが 後にO +. しか使わないので省略
ఏҊख๏ɿ1PTJUJPO-BNCEBT Positional Encodingに対応 ポジション1つ(1〜,)につき -×/の行列0を使用 0は全てのデータで同じ 時間計算量 1(,-/3) 空間計算量 1(,-/)
8 + Content Lambda Position Lambdas * ! + , - . / . +×* @' +×, 5' & ,×* 5! & ,×* 5( & ,×* … @( +×, …
ܭࢉྔͷൺֱ 9 時間計算量 空間計算量 Attention 6(9:; / + 0 )
6(9:;) Content only 6( : + ; /0) 6(9/0) Position only 6(9:;/0) 6(:;/) Lambda 6(9:;/0) 6(:;/ + 9:/0) 入力サイズ %×& , $×& バッチサイズ * !, #の大きさ ' 時間計算量 ほぼ等しい(工夫で高速化可能) 空間計算量 Positionは全部同じ → *に非依存 = 大きな%$がバッチサイズ非依存 → バッチサイズを大きくできる 画像サイズ224 × 224, バッチサイズ 128 Attention: 120 GB Lambda: 0.63 GB
ߴԽͷ Multi-Query Queryをℎ 個に分割 ! = [!! , !"
, ⋯ , !# ] 並列にlambdaを計算して結合 0 = 1 !! , 1 !" , ⋯ , 1 !# % → $ # より時間計算量 3 %$&'( # に(Key, Valueはそのまま) Lambda Convolution 計算量の多いPosition LambdasをCNNに置き換え 4) &×' = Conv2D(<) 11
ఆྔత݁Ռɿ-BNCEB͕BUUFOUJPO$//Λ্ճΔ 12 ResNet50の3 × 3Convを Layerに置き換え ImageNetの 224 ×224画像を使用 最も少ないパラメータ数で
Top-1 accuracy最大を達成
ఆྔత݁Ռɿܭࢉྔগ͔ͭਫ਼ྑ 13 Lambda Layerは • メモリ使用量 少 • Throughput 大
全レイヤーでpos lambdasを 共有しても精度は落ちない Attentionでは画像全体を使 用できない(Global ~) 9 ∶ バッチサイズ, ℎ ∶ ヘッド/クエリ数, : ∶ inputの長さ ; ∶ contextの長さ, / ∶ Q, Kのdepth, ? ∶ レイヤー数 画像全体 軸ごと クロップ
ఆྔత݁Ռɿগͳ͍ύϥϝʔλ͔ͭߴͰେܕϞσϧʹ ඖఢ͢Δਫ਼Λୡ 14 横軸:Trainにかかる時間 ≒ モデルサイズ LambdaResNet420, 画像サイズ320 LambdaResNet350, 画像サイズ320
350 epochの訓練をしたとき 3〜4倍高速でEfficientNetに匹敵 ViTには劣るものの、非常に高速
"CMBUJPO4UVEJFT 16 Content, Position片方のみを使用 Positionが精度に大きく貢献 ConvとLambdaの併用 前方にL → Throughput低下 後方にL
→ Throughputそのまま 後ろ2つL → 精度向上かつ高速
·ͱΊ 17 背景 Attentionの計算量削減 提案 先にKey, ValueをまとめるLambda Networks 結果 高速かつ大規模モデルに匹敵する精度