$30 off During Our Annual Pro Sale. View Details »
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
Machine Learning on Production
Search
Eko Kurniawan Khannedy
March 18, 2016
Technology
0
130
Machine Learning on Production
Machine Learning on Production
Eko Kurniawan Khannedy
March 18, 2016
Tweet
Share
More Decks by Eko Kurniawan Khannedy
See All by Eko Kurniawan Khannedy
Monolith to Event-Driven Microservices
khannedy
1
260
Refactoring
khannedy
0
340
Multi-Datacenter Kafka at Blibli.com
khannedy
2
1.5k
QA Tools - Research and Development
khannedy
0
290
Reactive Puzzle
khannedy
0
210
Event-Driven Architecture
khannedy
1
2k
Resilience Engineering with Hystrix and Spring
khannedy
1
560
Mocking for Unit Test using Mockito
khannedy
1
340
Centralized Configuration using Consul and Spring Cloud
khannedy
2
710
Other Decks in Technology
See All in Technology
オープンデータの内製化から分かったGISデータを巡る行政の課題
naokim84
2
1.3k
履歴テーブル、今回はこう作りました 〜 Delegated Types編 〜 / How We Built Our History Table This Time — With Delegated Types
moznion
14
9.1k
IaC を使いたくないけどポリシー管理をどうにかしたい
kazzpapa3
1
210
【5分でわかる】セーフィー エンジニア向け会社紹介
safie_recruit
0
37k
進化の早すぎる生成 AI と向き合う
satohjohn
0
490
MCP・A2A概要 〜Google Cloudで構築するなら〜
shukob
0
130
Kill the Vibe?Architecture in the age of AI
stoth
1
160
20251127 BigQueryリモート関数で作る、お手軽AIバッチ実行環境
daimatz
0
410
段階的に進める、 挫折しない自宅サーバ入門
yu_kod
5
2.1k
『星の世界の地図の話: Google Sky MapをAI Agentでよみがえらせる』 - Google Developers DevFest Tokyo 2025
taniiicom
0
470
Claude Code はじめてガイド -1時間で学べるAI駆動開発の基本と実践-
oikon48
40
22k
mablでリグレッションテストをデイリー実行するまで #mablExperience
bengo4com
0
460
Featured
See All Featured
Making the Leap to Tech Lead
cromwellryan
135
9.6k
GraphQLとの向き合い方2022年版
quramy
49
14k
[RailsConf 2023 Opening Keynote] The Magic of Rails
eileencodes
31
9.8k
Chrome DevTools: State of the Union 2024 - Debugging React & Beyond
addyosmani
9
1k
Building an army of robots
kneath
306
46k
Practical Orchestrator
shlominoach
190
11k
Keith and Marios Guide to Fast Websites
keithpitt
413
23k
How to Ace a Technical Interview
jacobian
280
24k
I Don’t Have Time: Getting Over the Fear to Launch Your Podcast
jcasabona
34
2.5k
XXLCSS - How to scale CSS and keep your sanity
sugarenia
249
1.3M
Embracing the Ebb and Flow
colly
88
4.9k
Building Applications with DynamoDB
mza
96
6.8k
Transcript
MACHINE LEARNING ON PRODUCTION EKO KURNIAWAN KHANNEDY
MACHINE LEARNING ON PRODUCTION EKO KURNIAWAN KHANNEDY ▸ Principal Software
Development Engineer at blibli.com ▸ Part of Research and Development Team ▸
[email protected]
HAL YANG PALING SULIT ITU ADALAH MEMBAWA MACHINE LEARNING KE
PRODUCTION …. MACHINE LEARNING ON PRODUCTION
MACHINE LEARNING ON PRODUCTION AGENDA ▸ The Hard Part ▸
Best Practice ▸ Machine Learning in blibli.com
THE HARD PART MACHINE LEARNING ON PRODUCTION
MACHINE LEARNING ON PRODUCTION DATA ▸ Data Too Big ▸
Unstructured Data ▸ Document Oriented and Master Detail Data ▸ Continuous Data ▸ Imbalance Data ▸ Wild Data
MACHINE LEARNING ON PRODUCTION PREPROCESSING ▸ Feature Extraction ▸ Too
Many Features Extraction Makes Process Too Long
MACHINE LEARNING ON PRODUCTION TRAINING ▸ Batch Training ▸ Sequential
Algorithm ▸ Validation
BEST PRACTICE MACHINE LEARNING ON PRODUCTION
DATA
MACHINE LEARNING ON PRODUCTION DATA TOO BIG ▸ Load data
to memory. ▸ Streaming the datasource. ▸ Split data into multiple nodes. ▸ Use memory-file database.
MACHINE LEARNING ON PRODUCTION UNSTRUCTURED DATA ▸ Analyse Your Data
▸ Find Characteristic of Your Data ▸ Find Best Approachment for that case.
MACHINE LEARNING ON PRODUCTION DOCUMENT ORIENTED AND MASTER DETAIL DATA
▸ Analyse Your Data ▸ Find the Best Way to Treat The Data
MACHINE LEARNING ON PRODUCTION CONTINUOUS DATA ▸ Wide the range
that use in normalization process. ▸ Consider it as a missing value.
MACHINE LEARNING ON PRODUCTION IMBALANCE DATA ▸ Down Sampling. ▸
Up Sampling.
MACHINE LEARNING ON PRODUCTION WILD DATA ▸ Use Default Value.
▸ Use Average Value. ▸ Use Machine Learning to Predict Missing Value.
PREPROCESSING
MACHINE LEARNING ON PRODUCTION FEATURE EXTRACTION ▸ Add as Many
Facts as Possible ▸ Remove Irrelevant Feature
MACHINE LEARNING ON PRODUCTION TOO MANY FEATURES EXTRACTION MAKES PROCESS
TOO LONG ▸ Use Non-Blocking Process ▸ Use Event Driven Process ▸ Use Parallel Process
TRAINING
MACHINE LEARNING ON PRODUCTION BATCH TRAINING ▸ Use Real Time
Training ▸ Scheduled Training
MACHINE LEARNING ON PRODUCTION SEQUENTIAL ALGORITHM ▸ Distributed The Data
▸ Parallel The Algorithm
MACHINE LEARNING ON PRODUCTION VALIDATION ▸ Split Validation ▸ Cross
Validation ▸ Parallel The Validation
MACHINE LEARNING IN BLIBLI.COM MACHINE LEARNING ON PRODUCTION
MACHINE LEARNING ON PRODUCTION FRAUD PREVENTION PLATFORM RESTFULL MASTER DATA
CLIENT MACHINE LEARNING ENGINE PREPROCESSING ENGINE THIRD PARTY SERVICE
MACHINE LEARNING ON PRODUCTION MACHINE LEARNING ENGINE RESTFULL METADATA DATA
CLIENT TRAINING ENGINE TRAINING DATA CLASSIFICATION ENGINE
THANKS