Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
Machine Learning on Production
Search
Eko Kurniawan Khannedy
March 18, 2016
Technology
0
130
Machine Learning on Production
Machine Learning on Production
Eko Kurniawan Khannedy
March 18, 2016
Tweet
Share
More Decks by Eko Kurniawan Khannedy
See All by Eko Kurniawan Khannedy
Monolith to Event-Driven Microservices
khannedy
1
260
Refactoring
khannedy
0
340
Multi-Datacenter Kafka at Blibli.com
khannedy
2
1.5k
QA Tools - Research and Development
khannedy
0
280
Reactive Puzzle
khannedy
0
200
Event-Driven Architecture
khannedy
1
1.9k
Resilience Engineering with Hystrix and Spring
khannedy
1
560
Mocking for Unit Test using Mockito
khannedy
1
340
Centralized Configuration using Consul and Spring Cloud
khannedy
2
700
Other Decks in Technology
See All in Technology
コンテキストエンジニアリング入門〜AI Coding Agent作りで学ぶ文脈設計〜
kworkdev
PRO
1
640
AIAgentの限界を超え、 現場を動かすWorkflowAgentの設計と実践
miyatakoji
1
170
オープンソースでどこまでできる?フォーマル検証チャレンジ
msyksphinz
0
130
リセラー企業のテクサポ担当が考える、生成 AI 時代のトラブルシュート 2025
kazzpapa3
1
160
Developer Advocate / Community Managerなるには?
tsho
0
140
ComposeではないコードをCompose化する case ビズリーチ / DroidKaigi 2025 koyasai
visional_engineering_and_design
0
110
Performance Insights 廃止から Database Insights 利用へ/transition-from-performance-insights-to-database-insights
emiki
0
250
20251014_Pythonを実務で徹底的に使いこなした話
ippei0923
0
190
GoでもGUIアプリを作りたい!
kworkdev
PRO
0
140
生成AIとM5Stack / M5 Japan Tour 2025 Autumn 東京
you
PRO
0
250
衛星画像超解像化によって実現する2D, 3D空間情報の即時生成と“AI as a Service”/ Real-time generation spatial data enabled_by satellite image super-resolution
lehupa
0
160
成長自己責任時代のあるきかた/How to navigate the era of personal responsibility for growth
kwappa
4
320
Featured
See All Featured
4 Signs Your Business is Dying
shpigford
185
22k
Imperfection Machines: The Place of Print at Facebook
scottboms
269
13k
Faster Mobile Websites
deanohume
310
31k
Balancing Empowerment & Direction
lara
4
690
Designing for Performance
lara
610
69k
Why Our Code Smells
bkeepers
PRO
339
57k
Java REST API Framework Comparison - PWX 2021
mraible
33
8.9k
A Tale of Four Properties
chriscoyier
161
23k
Improving Core Web Vitals using Speculation Rules API
sergeychernyshev
20
1.2k
Visualization
eitanlees
149
16k
Reflections from 52 weeks, 52 projects
jeffersonlam
352
21k
The Power of CSS Pseudo Elements
geoffreycrofte
79
6k
Transcript
MACHINE LEARNING ON PRODUCTION EKO KURNIAWAN KHANNEDY
MACHINE LEARNING ON PRODUCTION EKO KURNIAWAN KHANNEDY ▸ Principal Software
Development Engineer at blibli.com ▸ Part of Research and Development Team ▸
[email protected]
HAL YANG PALING SULIT ITU ADALAH MEMBAWA MACHINE LEARNING KE
PRODUCTION …. MACHINE LEARNING ON PRODUCTION
MACHINE LEARNING ON PRODUCTION AGENDA ▸ The Hard Part ▸
Best Practice ▸ Machine Learning in blibli.com
THE HARD PART MACHINE LEARNING ON PRODUCTION
MACHINE LEARNING ON PRODUCTION DATA ▸ Data Too Big ▸
Unstructured Data ▸ Document Oriented and Master Detail Data ▸ Continuous Data ▸ Imbalance Data ▸ Wild Data
MACHINE LEARNING ON PRODUCTION PREPROCESSING ▸ Feature Extraction ▸ Too
Many Features Extraction Makes Process Too Long
MACHINE LEARNING ON PRODUCTION TRAINING ▸ Batch Training ▸ Sequential
Algorithm ▸ Validation
BEST PRACTICE MACHINE LEARNING ON PRODUCTION
DATA
MACHINE LEARNING ON PRODUCTION DATA TOO BIG ▸ Load data
to memory. ▸ Streaming the datasource. ▸ Split data into multiple nodes. ▸ Use memory-file database.
MACHINE LEARNING ON PRODUCTION UNSTRUCTURED DATA ▸ Analyse Your Data
▸ Find Characteristic of Your Data ▸ Find Best Approachment for that case.
MACHINE LEARNING ON PRODUCTION DOCUMENT ORIENTED AND MASTER DETAIL DATA
▸ Analyse Your Data ▸ Find the Best Way to Treat The Data
MACHINE LEARNING ON PRODUCTION CONTINUOUS DATA ▸ Wide the range
that use in normalization process. ▸ Consider it as a missing value.
MACHINE LEARNING ON PRODUCTION IMBALANCE DATA ▸ Down Sampling. ▸
Up Sampling.
MACHINE LEARNING ON PRODUCTION WILD DATA ▸ Use Default Value.
▸ Use Average Value. ▸ Use Machine Learning to Predict Missing Value.
PREPROCESSING
MACHINE LEARNING ON PRODUCTION FEATURE EXTRACTION ▸ Add as Many
Facts as Possible ▸ Remove Irrelevant Feature
MACHINE LEARNING ON PRODUCTION TOO MANY FEATURES EXTRACTION MAKES PROCESS
TOO LONG ▸ Use Non-Blocking Process ▸ Use Event Driven Process ▸ Use Parallel Process
TRAINING
MACHINE LEARNING ON PRODUCTION BATCH TRAINING ▸ Use Real Time
Training ▸ Scheduled Training
MACHINE LEARNING ON PRODUCTION SEQUENTIAL ALGORITHM ▸ Distributed The Data
▸ Parallel The Algorithm
MACHINE LEARNING ON PRODUCTION VALIDATION ▸ Split Validation ▸ Cross
Validation ▸ Parallel The Validation
MACHINE LEARNING IN BLIBLI.COM MACHINE LEARNING ON PRODUCTION
MACHINE LEARNING ON PRODUCTION FRAUD PREVENTION PLATFORM RESTFULL MASTER DATA
CLIENT MACHINE LEARNING ENGINE PREPROCESSING ENGINE THIRD PARTY SERVICE
MACHINE LEARNING ON PRODUCTION MACHINE LEARNING ENGINE RESTFULL METADATA DATA
CLIENT TRAINING ENGINE TRAINING DATA CLASSIFICATION ENGINE
THANKS