Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
Machine Learning on Production
Search
Eko Kurniawan Khannedy
March 18, 2016
Technology
0
130
Machine Learning on Production
Machine Learning on Production
Eko Kurniawan Khannedy
March 18, 2016
Tweet
Share
More Decks by Eko Kurniawan Khannedy
See All by Eko Kurniawan Khannedy
Monolith to Event-Driven Microservices
khannedy
1
270
Refactoring
khannedy
0
350
Multi-Datacenter Kafka at Blibli.com
khannedy
2
1.5k
QA Tools - Research and Development
khannedy
0
290
Reactive Puzzle
khannedy
0
210
Event-Driven Architecture
khannedy
1
2k
Resilience Engineering with Hystrix and Spring
khannedy
1
570
Mocking for Unit Test using Mockito
khannedy
1
340
Centralized Configuration using Consul and Spring Cloud
khannedy
2
710
Other Decks in Technology
See All in Technology
ブロックテーマ、WordPress でウェブサイトをつくるということ / 2026.02.07 Gifu WordPress Meetup
torounit
0
180
We Built for Predictability; The Workloads Didn’t Care
stahnma
0
140
Greatest Disaster Hits in Web Performance
guaca
0
250
What happened to RubyGems and what can we learn?
mikemcquaid
0
300
こんなところでも(地味に)活躍するImage Modeさんを知ってるかい?- Image Mode for OpenShift -
tsukaman
0
140
仕様書駆動AI開発の実践: Issue→Skill→PRテンプレで 再現性を作る
knishioka
2
660
レガシー共有バッチ基盤への挑戦 - SREドリブンなリアーキテクチャリングの取り組み
tatsukoni
0
220
OpenShiftでllm-dを動かそう!
jpishikawa
0
110
データの整合性を保ちたいだけなんだ
shoheimitani
8
3.1k
AIエージェントを開発しよう!-AgentCore活用の勘所-
yukiogawa
0
170
Claude_CodeでSEOを最適化する_AI_Ops_Community_Vol.2__マーケティングx_AIはここまで進化した.pdf
riku_423
2
570
Embedded SREの終わりを設計する 「なんとなく」から計画的な自立支援へ
sansantech
PRO
3
2.5k
Featured
See All Featured
Automating Front-end Workflow
addyosmani
1371
200k
The Cult of Friendly URLs
andyhume
79
6.8k
SEO for Brand Visibility & Recognition
aleyda
0
4.2k
実際に使うSQLの書き方 徹底解説 / pgcon21j-tutorial
soudai
PRO
196
71k
WCS-LA-2024
lcolladotor
0
450
世界の人気アプリ100個を分析して見えたペイウォール設計の心得
akihiro_kokubo
PRO
66
37k
Dominate Local Search Results - an insider guide to GBP, reviews, and Local SEO
greggifford
PRO
0
78
The Psychology of Web Performance [Beyond Tellerrand 2023]
tammyeverts
49
3.3k
End of SEO as We Know It (SMX Advanced Version)
ipullrank
3
3.9k
How to build a perfect <img>
jonoalderson
1
4.9k
コードの90%をAIが書く世界で何が待っているのか / What awaits us in a world where 90% of the code is written by AI
rkaga
60
42k
Build your cross-platform service in a week with App Engine
jlugia
234
18k
Transcript
MACHINE LEARNING ON PRODUCTION EKO KURNIAWAN KHANNEDY
MACHINE LEARNING ON PRODUCTION EKO KURNIAWAN KHANNEDY ▸ Principal Software
Development Engineer at blibli.com ▸ Part of Research and Development Team ▸
[email protected]
HAL YANG PALING SULIT ITU ADALAH MEMBAWA MACHINE LEARNING KE
PRODUCTION …. MACHINE LEARNING ON PRODUCTION
MACHINE LEARNING ON PRODUCTION AGENDA ▸ The Hard Part ▸
Best Practice ▸ Machine Learning in blibli.com
THE HARD PART MACHINE LEARNING ON PRODUCTION
MACHINE LEARNING ON PRODUCTION DATA ▸ Data Too Big ▸
Unstructured Data ▸ Document Oriented and Master Detail Data ▸ Continuous Data ▸ Imbalance Data ▸ Wild Data
MACHINE LEARNING ON PRODUCTION PREPROCESSING ▸ Feature Extraction ▸ Too
Many Features Extraction Makes Process Too Long
MACHINE LEARNING ON PRODUCTION TRAINING ▸ Batch Training ▸ Sequential
Algorithm ▸ Validation
BEST PRACTICE MACHINE LEARNING ON PRODUCTION
DATA
MACHINE LEARNING ON PRODUCTION DATA TOO BIG ▸ Load data
to memory. ▸ Streaming the datasource. ▸ Split data into multiple nodes. ▸ Use memory-file database.
MACHINE LEARNING ON PRODUCTION UNSTRUCTURED DATA ▸ Analyse Your Data
▸ Find Characteristic of Your Data ▸ Find Best Approachment for that case.
MACHINE LEARNING ON PRODUCTION DOCUMENT ORIENTED AND MASTER DETAIL DATA
▸ Analyse Your Data ▸ Find the Best Way to Treat The Data
MACHINE LEARNING ON PRODUCTION CONTINUOUS DATA ▸ Wide the range
that use in normalization process. ▸ Consider it as a missing value.
MACHINE LEARNING ON PRODUCTION IMBALANCE DATA ▸ Down Sampling. ▸
Up Sampling.
MACHINE LEARNING ON PRODUCTION WILD DATA ▸ Use Default Value.
▸ Use Average Value. ▸ Use Machine Learning to Predict Missing Value.
PREPROCESSING
MACHINE LEARNING ON PRODUCTION FEATURE EXTRACTION ▸ Add as Many
Facts as Possible ▸ Remove Irrelevant Feature
MACHINE LEARNING ON PRODUCTION TOO MANY FEATURES EXTRACTION MAKES PROCESS
TOO LONG ▸ Use Non-Blocking Process ▸ Use Event Driven Process ▸ Use Parallel Process
TRAINING
MACHINE LEARNING ON PRODUCTION BATCH TRAINING ▸ Use Real Time
Training ▸ Scheduled Training
MACHINE LEARNING ON PRODUCTION SEQUENTIAL ALGORITHM ▸ Distributed The Data
▸ Parallel The Algorithm
MACHINE LEARNING ON PRODUCTION VALIDATION ▸ Split Validation ▸ Cross
Validation ▸ Parallel The Validation
MACHINE LEARNING IN BLIBLI.COM MACHINE LEARNING ON PRODUCTION
MACHINE LEARNING ON PRODUCTION FRAUD PREVENTION PLATFORM RESTFULL MASTER DATA
CLIENT MACHINE LEARNING ENGINE PREPROCESSING ENGINE THIRD PARTY SERVICE
MACHINE LEARNING ON PRODUCTION MACHINE LEARNING ENGINE RESTFULL METADATA DATA
CLIENT TRAINING ENGINE TRAINING DATA CLASSIFICATION ENGINE
THANKS