Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
Machine Learning on Production
Search
Sponsored
·
Your Podcast. Everywhere. Effortlessly.
Share. Educate. Inspire. Entertain. You do you. We'll handle the rest.
→
Eko Kurniawan Khannedy
March 18, 2016
Technology
0
130
Machine Learning on Production
Machine Learning on Production
Eko Kurniawan Khannedy
March 18, 2016
Tweet
Share
More Decks by Eko Kurniawan Khannedy
See All by Eko Kurniawan Khannedy
Monolith to Event-Driven Microservices
khannedy
1
270
Refactoring
khannedy
0
350
Multi-Datacenter Kafka at Blibli.com
khannedy
2
1.5k
QA Tools - Research and Development
khannedy
0
290
Reactive Puzzle
khannedy
0
210
Event-Driven Architecture
khannedy
1
2k
Resilience Engineering with Hystrix and Spring
khannedy
1
570
Mocking for Unit Test using Mockito
khannedy
1
340
Centralized Configuration using Consul and Spring Cloud
khannedy
2
710
Other Decks in Technology
See All in Technology
クレジットカード決済基盤を支えるSRE - 厳格な監査とSRE運用の両立 (SRE Kaigi 2026)
capytan
6
2.7k
Introduction to Sansan for Engineers / エンジニア向け会社紹介
sansan33
PRO
6
68k
顧客の言葉を、そのまま信じない勇気
yamatai1212
1
350
[CV勉強会@関東 World Model 読み会] Orbis: Overcoming Challenges of Long-Horizon Prediction in Driving World Models (Mousakhan+, NeurIPS 2025)
abemii
0
130
予期せぬコストの急増を障害のように扱う――「コスト版ポストモーテム」の導入とその後の改善
muziyoshiz
1
1.8k
StrandsとNeptuneを使ってナレッジグラフを構築する
yakumo
1
110
プロダクト成長を支える開発基盤とスケールに伴う課題
yuu26
4
1.3k
Amazon Bedrock Knowledge Basesチャンキング解説!
aoinoguchi
0
140
Azure Durable Functions で作った NL2SQL Agent の精度向上に取り組んだ話/jat08
thara0402
0
180
MCPでつなぐElasticsearchとLLM - 深夜の障害対応を楽にしたい / Bridging Elasticsearch and LLMs with MCP
sashimimochi
0
170
AzureでのIaC - Bicep? Terraform? それ早く言ってよ会議
torumakabe
1
530
All About Sansan – for New Global Engineers
sansan33
PRO
1
1.3k
Featured
See All Featured
Unsuck your backbone
ammeep
671
58k
Put a Button on it: Removing Barriers to Going Fast.
kastner
60
4.2k
Unlocking the hidden potential of vector embeddings in international SEO
frankvandijk
0
170
Lightning Talk: Beautiful Slides for Beginners
inesmontani
PRO
1
440
How STYLIGHT went responsive
nonsquared
100
6k
jQuery: Nuts, Bolts and Bling
dougneiner
65
8.4k
Leveraging LLMs for student feedback in introductory data science courses - posit::conf(2025)
minecr
0
140
Visualization
eitanlees
150
17k
Building a Scalable Design System with Sketch
lauravandoore
463
34k
Connecting the Dots Between Site Speed, User Experience & Your Business [WebExpo 2025]
tammyeverts
11
830
Fashionably flexible responsive web design (full day workshop)
malarkey
408
66k
Keith and Marios Guide to Fast Websites
keithpitt
413
23k
Transcript
MACHINE LEARNING ON PRODUCTION EKO KURNIAWAN KHANNEDY
MACHINE LEARNING ON PRODUCTION EKO KURNIAWAN KHANNEDY ▸ Principal Software
Development Engineer at blibli.com ▸ Part of Research and Development Team ▸
[email protected]
HAL YANG PALING SULIT ITU ADALAH MEMBAWA MACHINE LEARNING KE
PRODUCTION …. MACHINE LEARNING ON PRODUCTION
MACHINE LEARNING ON PRODUCTION AGENDA ▸ The Hard Part ▸
Best Practice ▸ Machine Learning in blibli.com
THE HARD PART MACHINE LEARNING ON PRODUCTION
MACHINE LEARNING ON PRODUCTION DATA ▸ Data Too Big ▸
Unstructured Data ▸ Document Oriented and Master Detail Data ▸ Continuous Data ▸ Imbalance Data ▸ Wild Data
MACHINE LEARNING ON PRODUCTION PREPROCESSING ▸ Feature Extraction ▸ Too
Many Features Extraction Makes Process Too Long
MACHINE LEARNING ON PRODUCTION TRAINING ▸ Batch Training ▸ Sequential
Algorithm ▸ Validation
BEST PRACTICE MACHINE LEARNING ON PRODUCTION
DATA
MACHINE LEARNING ON PRODUCTION DATA TOO BIG ▸ Load data
to memory. ▸ Streaming the datasource. ▸ Split data into multiple nodes. ▸ Use memory-file database.
MACHINE LEARNING ON PRODUCTION UNSTRUCTURED DATA ▸ Analyse Your Data
▸ Find Characteristic of Your Data ▸ Find Best Approachment for that case.
MACHINE LEARNING ON PRODUCTION DOCUMENT ORIENTED AND MASTER DETAIL DATA
▸ Analyse Your Data ▸ Find the Best Way to Treat The Data
MACHINE LEARNING ON PRODUCTION CONTINUOUS DATA ▸ Wide the range
that use in normalization process. ▸ Consider it as a missing value.
MACHINE LEARNING ON PRODUCTION IMBALANCE DATA ▸ Down Sampling. ▸
Up Sampling.
MACHINE LEARNING ON PRODUCTION WILD DATA ▸ Use Default Value.
▸ Use Average Value. ▸ Use Machine Learning to Predict Missing Value.
PREPROCESSING
MACHINE LEARNING ON PRODUCTION FEATURE EXTRACTION ▸ Add as Many
Facts as Possible ▸ Remove Irrelevant Feature
MACHINE LEARNING ON PRODUCTION TOO MANY FEATURES EXTRACTION MAKES PROCESS
TOO LONG ▸ Use Non-Blocking Process ▸ Use Event Driven Process ▸ Use Parallel Process
TRAINING
MACHINE LEARNING ON PRODUCTION BATCH TRAINING ▸ Use Real Time
Training ▸ Scheduled Training
MACHINE LEARNING ON PRODUCTION SEQUENTIAL ALGORITHM ▸ Distributed The Data
▸ Parallel The Algorithm
MACHINE LEARNING ON PRODUCTION VALIDATION ▸ Split Validation ▸ Cross
Validation ▸ Parallel The Validation
MACHINE LEARNING IN BLIBLI.COM MACHINE LEARNING ON PRODUCTION
MACHINE LEARNING ON PRODUCTION FRAUD PREVENTION PLATFORM RESTFULL MASTER DATA
CLIENT MACHINE LEARNING ENGINE PREPROCESSING ENGINE THIRD PARTY SERVICE
MACHINE LEARNING ON PRODUCTION MACHINE LEARNING ENGINE RESTFULL METADATA DATA
CLIENT TRAINING ENGINE TRAINING DATA CLASSIFICATION ENGINE
THANKS