Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
Machine Learning on Production
Search
Eko Kurniawan Khannedy
March 18, 2016
Technology
0
130
Machine Learning on Production
Machine Learning on Production
Eko Kurniawan Khannedy
March 18, 2016
Tweet
Share
More Decks by Eko Kurniawan Khannedy
See All by Eko Kurniawan Khannedy
Monolith to Event-Driven Microservices
khannedy
1
250
Refactoring
khannedy
0
310
Multi-Datacenter Kafka at Blibli.com
khannedy
2
1.5k
QA Tools - Research and Development
khannedy
0
280
Reactive Puzzle
khannedy
0
200
Event-Driven Architecture
khannedy
1
1.8k
Resilience Engineering with Hystrix and Spring
khannedy
1
560
Mocking for Unit Test using Mockito
khannedy
1
330
Centralized Configuration using Consul and Spring Cloud
khannedy
2
660
Other Decks in Technology
See All in Technology
スクラムというコンフォートゾーンから抜け出そう!プロジェクト全体に目を向けるインセプションデッキ / Inception Deck for seeing the whole project
takaking22
3
170
EMConf JP 2025 懇親会LT / EMConf JP 2025 social gathering
sugamasao
2
210
困難を「一般解」で解く
fujiwara3
8
2.3k
IAMのマニアックな話2025
nrinetcom
PRO
6
1.4k
OPENLOGI Company Profile for engineer
hr01
1
20k
Qiita Organizationを導入したら、アウトプッターが爆増して会社がちょっと有名になった件
minorun365
PRO
1
350
30→150人のエンジニア組織拡大に伴うアジャイル文化を醸成する役割と取り組みの変化
nagata03
0
360
20250307_エンジニアじゃないけどAzureはじめてみた
ponponmikankan
2
180
いまからでも遅くない!コンテナでWebアプリを動かしてみよう!コンテナハンズオン編
nomu
0
180
Platform Engineeringで クラウドの「楽しくない」を解消しよう
jacopen
4
220
アジャイルな開発チームでテスト戦略の話は誰がする? / Who Talks About Test Strategy?
ak1210
1
850
Aurora PostgreSQLがCloudWatch Logsに 出力するログの課金を削減してみる #jawsdays2025
non97
1
250
Featured
See All Featured
Become a Pro
speakerdeck
PRO
26
5.2k
Cheating the UX When There Is Nothing More to Optimize - PixelPioneers
stephaniewalter
280
13k
Embracing the Ebb and Flow
colly
84
4.6k
4 Signs Your Business is Dying
shpigford
183
22k
For a Future-Friendly Web
brad_frost
176
9.6k
Optimizing for Happiness
mojombo
377
70k
Responsive Adventures: Dirty Tricks From The Dark Corners of Front-End
smashingmag
251
21k
The Language of Interfaces
destraynor
156
24k
Templates, Plugins, & Blocks: Oh My! Creating the theme that thinks of everything
marktimemedia
30
2.3k
ピンチをチャンスに:未来をつくるプロダクトロードマップ #pmconf2020
aki_iinuma
115
51k
GraphQLとの向き合い方2022年版
quramy
44
14k
How to Ace a Technical Interview
jacobian
276
23k
Transcript
MACHINE LEARNING ON PRODUCTION EKO KURNIAWAN KHANNEDY
MACHINE LEARNING ON PRODUCTION EKO KURNIAWAN KHANNEDY ▸ Principal Software
Development Engineer at blibli.com ▸ Part of Research and Development Team ▸ eko.k.khannedy@gdn-commerce.com
HAL YANG PALING SULIT ITU ADALAH MEMBAWA MACHINE LEARNING KE
PRODUCTION …. MACHINE LEARNING ON PRODUCTION
MACHINE LEARNING ON PRODUCTION AGENDA ▸ The Hard Part ▸
Best Practice ▸ Machine Learning in blibli.com
THE HARD PART MACHINE LEARNING ON PRODUCTION
MACHINE LEARNING ON PRODUCTION DATA ▸ Data Too Big ▸
Unstructured Data ▸ Document Oriented and Master Detail Data ▸ Continuous Data ▸ Imbalance Data ▸ Wild Data
MACHINE LEARNING ON PRODUCTION PREPROCESSING ▸ Feature Extraction ▸ Too
Many Features Extraction Makes Process Too Long
MACHINE LEARNING ON PRODUCTION TRAINING ▸ Batch Training ▸ Sequential
Algorithm ▸ Validation
BEST PRACTICE MACHINE LEARNING ON PRODUCTION
DATA
MACHINE LEARNING ON PRODUCTION DATA TOO BIG ▸ Load data
to memory. ▸ Streaming the datasource. ▸ Split data into multiple nodes. ▸ Use memory-file database.
MACHINE LEARNING ON PRODUCTION UNSTRUCTURED DATA ▸ Analyse Your Data
▸ Find Characteristic of Your Data ▸ Find Best Approachment for that case.
MACHINE LEARNING ON PRODUCTION DOCUMENT ORIENTED AND MASTER DETAIL DATA
▸ Analyse Your Data ▸ Find the Best Way to Treat The Data
MACHINE LEARNING ON PRODUCTION CONTINUOUS DATA ▸ Wide the range
that use in normalization process. ▸ Consider it as a missing value.
MACHINE LEARNING ON PRODUCTION IMBALANCE DATA ▸ Down Sampling. ▸
Up Sampling.
MACHINE LEARNING ON PRODUCTION WILD DATA ▸ Use Default Value.
▸ Use Average Value. ▸ Use Machine Learning to Predict Missing Value.
PREPROCESSING
MACHINE LEARNING ON PRODUCTION FEATURE EXTRACTION ▸ Add as Many
Facts as Possible ▸ Remove Irrelevant Feature
MACHINE LEARNING ON PRODUCTION TOO MANY FEATURES EXTRACTION MAKES PROCESS
TOO LONG ▸ Use Non-Blocking Process ▸ Use Event Driven Process ▸ Use Parallel Process
TRAINING
MACHINE LEARNING ON PRODUCTION BATCH TRAINING ▸ Use Real Time
Training ▸ Scheduled Training
MACHINE LEARNING ON PRODUCTION SEQUENTIAL ALGORITHM ▸ Distributed The Data
▸ Parallel The Algorithm
MACHINE LEARNING ON PRODUCTION VALIDATION ▸ Split Validation ▸ Cross
Validation ▸ Parallel The Validation
MACHINE LEARNING IN BLIBLI.COM MACHINE LEARNING ON PRODUCTION
MACHINE LEARNING ON PRODUCTION FRAUD PREVENTION PLATFORM RESTFULL MASTER DATA
CLIENT MACHINE LEARNING ENGINE PREPROCESSING ENGINE THIRD PARTY SERVICE
MACHINE LEARNING ON PRODUCTION MACHINE LEARNING ENGINE RESTFULL METADATA DATA
CLIENT TRAINING ENGINE TRAINING DATA CLASSIFICATION ENGINE
THANKS