Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
Data Gateway Talk vol.4 分析案件をやり始めたときに陥っていたことの共...
Search
Sponsored
·
Your Podcast. Everywhere. Effortlessly.
Share. Educate. Inspire. Entertain. You do you. We'll handle the rest.
→
knagano
November 21, 2019
Business
0
2.9k
Data Gateway Talk vol.4 分析案件をやり始めたときに 陥っていたことの共有と対策 / DataGatewayTalk-Vol4-nagano
分析案件をやり始めたときに、自分の頭でちゃんと考えて分析ができていなかったのでどうやって対策したか
knagano
November 21, 2019
Tweet
Share
More Decks by knagano
See All by knagano
Notionによる情報収集と活かし方 / How to collect and utilize information by Notion
knagano1020
10
20k
正しく機能するOKR運用方法とは / The OKR operation method to function properly
knagano1020
1
140
Other Decks in Business
See All in Business
税理士法人チェスター_事務所紹介資料
mabhr
0
960
株式会社CINC 会社案内/Company introduction
cinchr
6
74k
Women in Agile Tokyo2026 「個をあるがままに生かす」は綺麗事でも簡単なことでもなかった
nekoyanagi
0
160
経営管理について / About Corporate Planning
loglass2019
0
7.3k
【新卒採用資料】Natee Company Deck _202601
nateehr
0
2.8k
ZEIN株式会社 会社説明資料【キャリア採用向け】
zein
0
130
会社説明資料
xinghr
0
230
Lego Agile Testing Workshop
pinboro
0
160
(4枚)PDCAサイクルとOODAループの違いを徹底解説
nyattx
PRO
0
150
株式会社ネオキャリア_採用ピッチ資料_20260128
neo_recruit
0
620
メドピアグループ紹介資料
medpeer_recruit
10
150k
株式会社Gizumo_会社紹介資料(2026.1更新)
gizumo
0
640
Featured
See All Featured
How to train your dragon (web standard)
notwaldorf
97
6.5k
The World Runs on Bad Software
bkeepers
PRO
72
12k
AI Search: Implications for SEO and How to Move Forward - #ShenzhenSEOConference
aleyda
1
1.1k
The untapped power of vector embeddings
frankvandijk
1
1.6k
Bash Introduction
62gerente
615
210k
CSS Pre-Processors: Stylus, Less & Sass
bermonpainter
359
30k
It's Worth the Effort
3n
188
29k
Producing Creativity
orderedlist
PRO
348
40k
A better future with KSS
kneath
240
18k
Building Adaptive Systems
keathley
44
2.9k
The Illustrated Guide to Node.js - THAT Conference 2024
reverentgeek
0
260
First, design no harm
axbom
PRO
2
1.1k
Transcript
分析案件をやり始めたときに 陥っていたことの共有と対策 ⻑野 克也 (@chitose_ng)
後⽇、スライドのアップロードをします。 Caution □□□□□□□□□□ 0/100%
DataGatewayをくぐり始めた⼈ DataGatewayをくぐろうとする部下がいる⼈ Target □□□□□□□□□□ 1/100%
Company TVISION INSIGHTS株式会社 Work - テレビの視聴態度のR&D - クライアントKPIとの関係性調査 ʘςϨϏͷࢹௌଶΛଌΔձࣾʗ Other
チトセナガノ(@chitose_ng) まずは蝋の翼から Tableauデータ分析 ~実践から活⽤まで~ プロフィール □□□□□□□□□□ 2/100%
Company TVISION INSIGHTS株式会社 業界的に新領域のデータを 提供する会社 ʘςϨϏͷࢹௌଶΛଌΔձࣾʗ プロフィール NO PRESENTATION ?/100%
モニターのリビングに⼈体認識技術を組み込んだ機械を設置し、 視聴態度データを取得 NO PRESENTATION ?/100%
⾃動で顔認識・識別 どう観ているのか (視聴体制) 誰が観ているのか (個⼈特定) テレビの注視度を 計測する NO PRESENTATION ?/100%
業界的に、今までは「テレビがついているか」のデータから KPIへの影響を⾒ていた NO PRESENTATION ?/100%
「テレビをどう観ているか」という解像度がより上がったデータから KPIへの影響を⾒ることができる NO PRESENTATION ?/100%
「テレビをどう観ているか」という解像度がより上がったデータから KPIへの影響を⾒ることができる 業界的に未解明の部分が多いので、 どう使えるかのR&Dと クライアントのKPIとの関係を調査/分析 仕事内容 NO PRESENTATION ?/100%
2015 04 2017 09 2019 01 Today SQLおじさん (データ抽出の⼈/ データアーキテクト)
R&D クライアント分析 2年半 1年半 BI屋 10ヶ⽉ ʘίίͷؾ͖ʗ 経歴 □□□□□□□□□□ 6/100%
分析案件をやり始めたときに よくあった会話
こんな感じのモデル考えてます! ◦◦という手法もあると思うけど なんでこの手法なの? な、なんとなくっす。。。 本当にあったアレな会話1 ʘ ্ ࢘ Ͱ ͢
ʗ ▪□□□□□□□□□ 10/100%
こんな感じのモデル考えてます! このモデル式だと☓☓に△△って仮定を 置いてるってことだよね? あっ、はい多分そうっす。 (言われるまで意識してなかったけど) 本当にあったアレな会話2 ʘ ্ ࢘ Ͱ
͢ ʗ ▪□□□□□□□□□ 12/100%
何故なんとなく分析をしてしまうのか︖ Topic
何故なんとなく分析をしてしまうのか 1 モデルの構築⼿法を どうやって選んだらいいのかわかっていない ▪□□□□□□□□□ 16/100%
1 モデルの構築⼿法を どうやって選んだらいいのかわかっていない 2 モデルの構築⼿法を選んだあとに 何について考えればいいのかわかっていない ▪▪□□□□□□□□ 20/100% 何故なんとなく分析をしてしまうのか
1 モデルの構築⼿法を どうやって選んだらいいのかわかっていない 2 モデルの構築⼿法を選んだあとに 何について考えればいいのかわかっていない テキトーにそれっぽい⼿法を選ぶ理由 テキトーに選んだ⼿法で、 テキトーに要素を⽳埋めする理由 ▪▪□□□□□□□□
26/100% 何故なんとなく分析をしてしまうのか
1 モデルの構築⼿法を どうやって選んだらいいのかわかっていない 2 モデルの構築⼿法を選んだあとに 何について考えればいいのかわかっていない どうやって防ぐか テキトーにそれっぽい⼿法を選ぶ理由 ▪▪▪□□□□□□□ 35/100%
何故なんとなく分析をしてしまうのか
テキトーにそれっぽい⼿法を選ぶの をどう防ぐか 何故その⼿法が必要なのかを考えた学習をする ▪▪▪□□□□□□□ 37/100%
テキトーにそれっぽい⼿法を選ぶの をどう防ぐか 何故その⼿法が必要なのかを考えた学習をする 何のために存在する⼿法︖ ▪▪▪▪□□□□□□ 40/100%
テキトーにそれっぽい⼿法を選ぶの をどう防ぐか 何故その⼿法が必要なのかを考えた学習をする 類似⼿法と⽐較した、 メリット・デメリットは︖ ▪▪▪▪□□□□□□ 42/100%
テキトーにそれっぽい⼿法を選ぶの をどう防ぐか 何故その⼿法が必要なのかを考えた学習をする 類似⼿法と⽐較した、 メリット・デメリットは︖ 類似⼿法との違いは、 何故うまれたの︖ ▪▪▪▪□□□□□□ 45/100%
テキトーにそれっぽい⼿法を選ぶの をどう防ぐか 何故その⼿法が必要なのかを考えた学習をする 何のために存在する⼿法︖ 類似⼿法との⽐較した、 メリット・デメリットは︖ 類似⼿法との違いは、 何故うまれたの︖ 要するに、論⽂のような読み⽅で理解・学習
Random Forestと Gradient Boosting Decision Treeの違いを ⾔えますか︖ Example ▪▪▪▪▪□□□□□ 50/100%
何故モデルをなんとなく作るか 1 モデルの構築⼿法を どうやって選んだらいいのかわかっていない 2 モデルの構築⼿法を選んだあとに 何について考えればいいのかわかっていない どうやって防ぐか テキトーに選んだ⼿法で、 テキトーに要素を⽳埋めする理由
▪▪▪▪▪□□□□□ 57/100%
選んだ要素ひとつひとつに問いを⽴て、 何故選んだのか説明可能な状態にする テキトーに要素を ⽳埋めするのをどう防ぐか ▪▪▪▪▪▪□□□□ 60/100%
説明ができない部分は、 考えていない部分 選んだ要素ひとつひとつに問いを⽴て、 何故選んだのか説明可能な状態にする テキトーに要素を ⽳埋めするのをどう防ぐか ▪▪▪▪▪▪□□□□ 62/100%
説明ができない部分は、 考えていない部分 この思考を繰り返すと、 考えて要素を⼊れられるようになる 選んだ要素ひとつひとつに問いを⽴て、 何故選んだのか説明可能な状態にする テキトーに要素を ⽳埋めするのをどう防ぐか ▪▪▪▪▪▪□□□□ 67/100%
次のモデルへの問いは何か Example ▪▪▪▪▪▪▪□□□ 70/100%
CM認知度 = α CM本数 + β CM種類ダミー + 定数 Example
▪▪▪▪▪▪▪□□□ 72/100%
Example OLSで解くので正規分布 CM認知度 = α CM本数 + β CM種類ダミー +
定数 ▪▪▪▪▪▪▪□□□ 74/100% どういう仮定を置いたモデル式なのか
Example CM認知度 = α CM本数 + β CM種類ダミー + 定数
▪▪▪▪▪▪▪□□□ 78/100% どういう仮定を置いたモデル式なのか 値が線形増加する OLSで解くので正規分布
Example CM認知度 = α CM本数 + β CM種類ダミー + 定数
▪▪▪▪▪▪▪▪□□ 82/100% どういう仮定を置いたモデル式なのか 値が線形増加する OLSで解くので正規分布 CM種類が別でも 効果が同じ
Example CM認知度 = α CM本数 + β CM種類ダミー + 定数
▪▪▪▪▪▪▪▪□□ 83/100% 値が線形増加する どういう仮定を置いたモデル式なのか 途中で飽和するから 対数化が必要では︖ OLSで解くので正規分布 CM種類が別でも 効果が同じ
Example CM認知度 = α CM本数 + β CM種類ダミー + 定数
▪▪▪▪▪▪▪▪□□ 87/100% 値が線形増加する どういう仮定を置いたモデル式なのか 途中で飽和するから 対数化が必要では︖ OLSで解くので正規分布 CM種類が別でも 効果が同じ CM種類で 効果が違うのでは︖
Example CM認知度 = α CM本数 + β CM種類ダミー + 定数
値が線形増加する どういう仮定を置いたモデル式なのか 途中で飽和するから 対数化が必要では︖ OLSで解くので正規分布 CM種類が別でも 効果が同じ CM種類で 効果が違うのでは︖ 何を問えばいいのかは慣れが必要。 はじめは上司に⼿伝ってもらおう。
今⽇のまとめ Today’s Summary ▪▪▪▪▪▪▪▪▪□ 94/100%
⾃分の頭でちゃんと考えた分析をするためには Today’s Summary 1 ⼿法の違いを意識して学習し、 2 何について考えればいいのか把握し思考することで、 3 ⾃分が考えたあらゆる選択に対して、説明可能にする。 ▪▪▪▪▪▪▪▪▪□
95/100%
▪▪▪▪▪▪▪▪▪▪ 100/100%