Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
LangGraphを用いたAIアプリケーションにおけるメモリ永続化の実践
Search
西岡 賢一郎 (Kenichiro Nishioka)
August 30, 2024
Technology
1
440
LangGraphを用いたAIアプリケーションにおけるメモリ永続化の実践
機械学習の社会実装勉強会 第38回 (
https://machine-learning-workshop.connpass.com/event/328440/
) の発表資料です。
西岡 賢一郎 (Kenichiro Nishioka)
August 30, 2024
Tweet
Share
More Decks by 西岡 賢一郎 (Kenichiro Nishioka)
See All by 西岡 賢一郎 (Kenichiro Nishioka)
DeepSeekを使ったローカルLLM構築
knishioka
0
16
業務ツールをAIエージェントとつなぐ - Composio
knishioka
0
140
LangGraphを使ったHuman in the loop
knishioka
0
160
AIシステムの品質と成功率を向上させるReflection
knishioka
0
30
LangGraph Templatesによる効率的なワークフロー構築
knishioka
0
120
AIエージェントの開発に特化した統合開発環境 LangGraph Studio
knishioka
0
160
Text-to-SQLをLangSmithで評価
knishioka
0
200
効果的なLLM評価法 LangSmithの技術と実践
knishioka
1
410
LangGraphのノード・エッジ・ルーティングを深堀り
knishioka
1
610
Other Decks in Technology
See All in Technology
RSNA2024振り返り
nanachi
0
580
自動テストの世界に、この5年間で起きたこと
autifyhq
10
8.5k
『衛星データ利用の方々にとって近いようで触れる機会のなさそうな小話 ~ 衛星搭載ソフトウェアと衛星運用ソフトウェア (実物) を動かしながらわいわいする編 ~』 @日本衛星データコミニティ勉強会
meltingrabbit
0
140
なぜ私は自分が使わないサービスを作るのか? / Why would I create a service that I would not use?
aiandrox
0
730
The Future of SEO: The Impact of AI on Search
badams
0
190
エンジニアが加速させるプロダクトディスカバリー 〜最速で価値ある機能を見つける方法〜 / product discovery accelerated by engineers
rince
4
330
運用しているアプリケーションのDBのリプレイスをやってみた
miura55
1
720
TAMとre:Capセキュリティ編 〜拡張脅威検出デモを添えて〜
fujiihda
2
240
Cloud Spanner 導入で実現した快適な開発と運用について
colopl
1
620
エンジニアのためのドキュメント力基礎講座〜構造化思考から始めよう〜(2025/02/15jbug広島#15発表資料)
yasuoyasuo
17
6.7k
利用終了したドメイン名の最強終活〜観測環境を育てて、分析・供養している件〜 / The Ultimate End-of-Life Preparation for Discontinued Domain Names
nttcom
2
190
Platform Engineeringは自由のめまい
nwiizo
4
2.1k
Featured
See All Featured
The Straight Up "How To Draw Better" Workshop
denniskardys
232
140k
Reflections from 52 weeks, 52 projects
jeffersonlam
348
20k
Site-Speed That Sticks
csswizardry
4
380
Unsuck your backbone
ammeep
669
57k
The Art of Delivering Value - GDevCon NA Keynote
reverentgeek
10
1.3k
[Rails World 2023 - Day 1 Closing Keynote] - The Magic of Rails
eileencodes
33
2.1k
Stop Working from a Prison Cell
hatefulcrawdad
267
20k
What’s in a name? Adding method to the madness
productmarketing
PRO
22
3.3k
Performance Is Good for Brains [We Love Speed 2024]
tammyeverts
7
630
Designing on Purpose - Digital PM Summit 2013
jponch
117
7.1k
The MySQL Ecosystem @ GitHub 2015
samlambert
250
12k
Responsive Adventures: Dirty Tricks From The Dark Corners of Front-End
smashingmag
251
21k
Transcript
LangGraphを用いた AIアプリケーションにおける メモリ永続化の実践 2024/08/31 機械学習の社会実装勉強会 第 38回 1
今回のお話 AIアプリケーション開発の新たな可能性を開く LangGraphの Checkpointer機能につい て、実際の動作をデモンストレーションを通じて紹介 2
自己紹介 名前 : 西岡 賢一郎 Twitter: @ken_nishi note: https://note.com/kenichiro YouTube:
【経営 xデータサイエンス x開発】西岡 賢一郎のチャンネル 経歴 東京大学で位置予測アルゴリズムを研究し博士 (学術 ) を取得 東京大学博士課程在学中にデータサイエンスのサービスを提供する株式会社 トライディアを設立 トライディアを売却し、 CTOとして 3年半務め、 2021年 10月末に CTOを退職 CDPのスタートアップ (Sr. CSM)・株式会社データインフォームド (CEO)・株 式会社ディースタッツ (CTO) プロダクト開発チーム・データサイエンスチームの立ち上げ 3
LangChainとは 大規模言語モデル( LLM)を使用したアプリケーションを構築するためのフレー ムワーク 複雑な AIタスクを簡単に実装できるようにする さまざまなコンポーネントやツールを提供 4
LangGraphとは LangChainの一部として開発されたライブラリ 状態を持つマルチアクターアプリケーションを構築するためのツール エージェントやマルチエージェントのワークフローを作成可能 5
なぜ永続性が必要か? 1. 文脈の維持 複数の対話にわたって会話の文脈を保持 ユーザーとの長期的な対話を可能に 2. 状態の管理 アプリケーションの現在の状態を保存 必要に応じて以前の状態に戻る能力 3.
エラーからの回復 障害発生時に最後の正常な状態から再開可能 6
永続性の実現方法: Checkpointer LangGraphでは、 「 Checkpointer」を通じて永続性を実現 Checkpionterとは: アプリケーションの状態を保存し、必要に応じて復元する機能 7
Checkpointerの主な特徴 1. セッションメモリ ユーザーとのやり取りの履歴を保存 保存された状態から会話を再開可能 2. エラー回復 最後に成功した保存状態から継続可能 システム障害時の影響を最小限に 3.
ヒューマンインザループ 人間の介入や承認を要する処理の実装 AIと人間の協調作業をスムーズに 8
Checkpointerの実装 LangGraph v0.2で導入された新しいライブラリ: langgraph_checkpoint : 基本インターフェース langgraph_checkpoint_sqlite : SQLiteに保存 (開発・テスト用
) langgraph_checkpoint_postgres : PostgreSQLに保存 (本番環境用 ) 9
LangGraph v0.2 の変更 変数名変更 thread_ts → checkpoint_id parent_ts → parent_checkpoint_id
import方法の変更 旧 : from langgraph.checkpoint import BaseCheckpointSaver 新 : from langgraph.checkpoint.base import BaseCheckpointSaver SQLiteチェックポインターが分離 : langgraph-checkpoint-sqlite 10
Checkpointerの使用例 from langgraph.graph import StateGraph from langgraph.checkpoint.sqlite import SqliteSaver #
グラフの構築 builder = StateGraph(State) # graphをcompileするときにcheckpointerを指定 with SqliteSaver.from_conn_string(":memory:") as memory: graph = builder.compile(checkpointer=memory) 11
Checkpointerの仕組み 12
Checkpointerの利点 1. 一貫性のある長期的な対話 ユーザーとの会話履歴を保持し、文脈に応じた応答が可能 2. 堅牢なアプリケーション エラーや中断からの回復が容易 3. 複雑なワークフローの実現 人間の介入を含む高度な処理フローを構築可能
4. 開発の柔軟性 様々なデータベースに対応可能 カスタム実装の作成が容易 13
考慮事項 1. パフォーマンスへの影響 履歴が増えると LLM呼び出しに時間がかかる可能性 2. カスタマイズの制限 履歴の動的な操作に一部制限あり 3. 実装の選択
使用環境に適した Checkpointer機能の選択が重要 14
デモンストレーション LangGraphの Checkpointer使用の実演 MemorySaver SqliteSaver PostgresSaver ソースコード : https://github.com/knishioka/machine-learning- workshop/blob/main/langchain/langchain_persistence.ipynb
15
まとめ LangGraphの Checkpointerは、永続性を実現する強力なツール 長期的な対話、エラー回復、複雑なワークフローを可能に 適切に使用することで、より洗練された AIアプリケーションの開発が可能 16
参考文献 1. LangGraph公式ドキュメント 2. LangGraph v0.2リリースブログ 3. LangGraph Persistence How-to
17