Upgrade to PRO for Only $50/Year—Limited-Time Offer! 🔥
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
Deep Dive into Momento with LangChain
Search
Kazuki Maeda
June 22, 2023
Technology
1
390
Deep Dive into Momento with LangChain
もめんと Meet-up in June #2
Kazuki Maeda
June 22, 2023
Tweet
Share
More Decks by Kazuki Maeda
See All by Kazuki Maeda
敢えて生成AIを使わないマネジメント業務
kzkmaeda
2
690
Amazon Bedrockで実現する 新たな学習体験
kzkmaeda
3
1.8k
日本の教育の未来 を考える テクノロジーは教育をどのように変えるのか
kzkmaeda
1
270
モノリスの認知負荷に立ち向かう、コードの所有者という思想と現実
kzkmaeda
0
250
エンジニアリング価値を黒字化する バリューベース戦略を用いた 技術戦略策定の道のり
kzkmaeda
9
6.8k
現場の種を事業の芽にする - エンジニア主導のイノベーションを事業戦略に装着する方法 -
kzkmaeda
2
6.6k
生成AIを用いた 新しい学びの体験を 提供するまでの道のり
kzkmaeda
0
380
生成AIによって変わる世界 -可能性とリスクについて考える-
kzkmaeda
2
350
新しいことを組織ではじめる、そしてつづける
kzkmaeda
5
1k
Other Decks in Technology
See All in Technology
re:Invent2025 3つの Frontier Agents を紹介 / introducing-3-frontier-agents
tomoki10
0
330
WordPress は終わったのか ~今のWordPress の制作手法ってなにがあんねん?~ / Is WordPress Over? How We Build with WordPress Today
tbshiki
2
890
ExpoのインダストリーブースでみたAWSが見せる製造業の未来
hamadakoji
0
180
MySQLとPostgreSQLのコレーション / Collation of MySQL and PostgreSQL
tmtms
1
1.1k
20251219 OpenIDファウンデーション・ジャパン紹介 / OpenID Foundation Japan Intro
oidfj
0
350
フィッシュボウルのやり方 / How to do a fishbowl
pauli
2
310
プロンプトやエージェントを自動的に作る方法
shibuiwilliam
15
15k
まだ間に合う! Agentic AI on AWSの現在地をやさしく一挙おさらい
minorun365
17
1.9k
AIBuildersDay_track_A_iidaxs
iidaxs
3
680
【U/Day Tokyo 2025】Cygames流 最新スマートフォンゲームの技術設計 〜『Shadowverse: Worlds Beyond』におけるアーキテクチャ再設計の挑戦~
cygames
PRO
2
1k
Strands AgentsとNova 2 SonicでS2Sを実践してみた
yama3133
1
1.2k
1人1サービス開発しているチームでのClaudeCodeの使い方
noayaoshiro
2
530
Featured
See All Featured
Producing Creativity
orderedlist
PRO
348
40k
Technical Leadership for Architectural Decision Making
baasie
0
180
What Being in a Rock Band Can Teach Us About Real World SEO
427marketing
0
140
A Tale of Four Properties
chriscoyier
162
23k
Site-Speed That Sticks
csswizardry
13
1k
Exploring the Power of Turbo Streams & Action Cable | RailsConf2023
kevinliebholz
37
6.2k
AI Search: Implications for SEO and How to Move Forward - #ShenzhenSEOConference
aleyda
1
1k
Marketing to machines
jonoalderson
1
4.3k
The Illustrated Guide to Node.js - THAT Conference 2024
reverentgeek
0
210
How to make the Groovebox
asonas
2
1.8k
Digital Projects Gone Horribly Wrong (And the UX Pros Who Still Save the Day) - Dean Schuster
uxyall
0
100
Agile that works and the tools we love
rasmusluckow
331
21k
Transcript
Deep Dive into Momento with LangChain もめんと Meet-up in June
#2 kzk_maeda
Kazuki Maeda @kzk_maeda SRE @atama plus AWS Community Builders AWS
Startup Community Core Member 7+ years of experience of AWS Like: Lambda / Step Functions / Glue / MWAA / Athena 最近はGoogle CloudとLLM系を勉強中 自己紹介
agenda Momento with LangChainを触ってみる Momento with LangChainのコードを追ってみる 今後の期待
agenda Momento with LangChainを触ってみる Momento with LangChainのコードを追ってみる 今後の期待
Momento Cacheとは • Serverless Cache Service • Web上でセットアップして、SDKを埋め込むだけで クラスターセットアップなど不要で利用開始できる •
キャパシティの管理、プロビジョニング、パフォーマンスモニタリングなど オペレーション業務からの解放
LangChainとは • LLM(大規模言語モデル)を利用したアプリケーション開発に利用できる ライブラリ • 各種LLM APIの抽象化、独自データのLoader、ツール群の組み合わせなどの 様々な機能が提供されている • バージョンアップ頻度が異常
なぜLangChainとMomento? https://twitter.com/LangChainAI/status/1662138670332395520?s=20
なぜLangChainとMomento? https://python.langchain.com/docs/ecosystem/integrations/momento
なぜLangChainとMomento? https://www.gomomento.com/blog/momento-is-now-fully-integrated-into-the-langchain-ecosystem
LangChainでMomentoが使える場所 • LLM Cache • Conversation Memory
LLM Cache 通常LangChainでは、都度OpenAIなどのLLMサービスとやりとりをしますが
LLM Cache Cacheが効いていると、InterceptしてCacheからResponseを返します
LLM Cache 実装 数行のコードで実装可能
LLM Cache クエリ時間比較 同一のPromptであれば実行時間を90%以上低減
LLM Cache Token消費量比較 CacheがAnswerを返すのでOpenAIのToken消費量は0
LLM Cache 時間もコストも削減が見込める!!
Conversation Memory 通常、LangChainからLLMへのRequestは状態を持たないので独立実行 →以前の会話内容をLangChainは記憶しない
Conversation Memory ConversationChainのMemoryとしてMomentoを活用し、会話の流れを作れる
Conversation Memory 実装 こちらもシンプルなコードで実装可能
agenda Momento with LangChainを触ってみる Momento with LangChainのコードを追ってみる 今後の期待
注 ここからLangChainのコードを眺めていきますが、 冒頭で紹介したように、LangChainの更新頻度は異常です。 以降のコードは version 0.0.207 のものとなっております。 また、説明の都合でコードの一部のみ抜粋して表示します。
LLM Cache 中で何が行われているのか追ってみましょう
LLM Cache llm_cache が有効であるとcacheに問い合わせる機構が LLMの基底クラスに定義されている
LLM Cache PromptとLLMのparameterをhash化して str castしたtextをKeyにして、Momentoに格納
LLM Cache こんな感じでCacheが衝突しないようになっている
Conversation Memory 中で何か行われているのか追ってみましょう
Conversation Memory ConversationChainの中でmemoryをセットできる
Conversation Memory デフォルトで message_store: 文字列をprefixに付与して session_id を追加したtextをKeyにしている
Conversation Memory plain textをKeyのprefixに追加することで、 CacheのKey(hash化された文字列)との衝突を 抑制している??という推測(中の人教えてください)
ここまで追ってみて • ライブラリを利用する側はシンプルに使えるようにいろんな処理が抽象化されてい る一方、実装側では衝突を防ぐための仕組みが入っていたりと工夫されていること がわかった • 実際にデバッグしてCache Keyを特定してコンソールから確認することができ、楽し かった
agenda Momento with LangChainを触ってみる Momento with LangChainのコードを追ってみる 今後の期待
今後の期待 • Cache機構の拡大 ◦ (LangChainの対応が必要かもしれませんが) Embeddingの生成など、他にもTokenを利用し、時 間がかかる処理があるので、そこでも Cacheが効かせられると嬉しいなと思った • Vector
Storeとしての利用 ◦ 時限式で消えるVector Storeという用途がLLMアプリケーションの中ではそこそこ求められるケース がありそう ◦ Vector Storeが消えていたら新規に Embedding生成してStoreすることでデータ鮮度を高く保つとか ◦ Momentoでそれが実現できると管理が楽で嬉しいなと思った
今後の期待 • 特にVector Storeとして使えると、こういう仕組みを作る時に使い勝手が 非常にいい(気がします)
Thank you