Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
コードレビュー地獄から抜け出すためのペアプロ育成法〜学習科学の視点から〜 #xpjug
Search
latte
September 19, 2020
Technology
10
9.8k
コードレビュー地獄から 抜け出すためのペアプロ育成法 〜学習科学の視点から〜 #xpjug
XP祭り2020 #xpjug で発表した内容です。
コードレビューが教育に良い理由と、
更に効果を高めるTipsを紹介しました。
latte
September 19, 2020
Tweet
Share
More Decks by latte
See All by latte
事例から学ぶアジャイル推進者のための「アイデアを組織に導入すること」を支える技術
latte9
0
100
快く動いてもらえる!仲間が増える! ストーリーで学ぶアジャイル推進者のための「アイデアを組織に導入すること」を支える技術
latte9
0
37
アジャイルコーチとしてスクラムマスターの評価をどう考えているか?
latte9
0
30
初心者SMを半年で即戦力扱い、給料も2段階UP事例紹介!
latte9
0
64
スクラムマスターやマネージャーのための信頼構築につながる傾聴の技術
latte9
8
3.3k
マネージャーのためのスクラムマスターのパフォーマンスを高めるTips集
latte9
0
1.2k
0からわかる部下が自律的に学んで成長する環境づくりの方法 〜 学習科学の理論をベースに 〜
latte9
2
1.1k
雑用スクラムマスターからの卒業伸びるスクラムマスターの任命&育成法〜学習科学に基づいた解説を添えて〜
latte9
1
840
仕事のモチベーションをあげるための1on1の使い方〜対話のテクニック集〜 @1on1カンファレンス
latte9
2
1.2k
Other Decks in Technology
See All in Technology
20250116_JAWS_Osaka
takuyay0ne
2
200
東京Ruby会議12 Ruby と Rust と私 / Tokyo RubyKaigi 12 Ruby, Rust and me
eagletmt
3
870
My small contributions - Fujiwara Tech Conference 2025
ijin
0
1.4k
いま現場PMのあなたが、 経営と向き合うPMになるために 必要なこと、腹をくくること
hiro93n
9
7.5k
AWSの生成AIサービス Amazon Bedrock入門!(2025年1月版)
minorun365
PRO
7
470
Git scrapingで始める継続的なデータ追跡 / Git Scraping
ohbarye
5
490
Visual StudioとかIDE関連小ネタ話
kosmosebi
1
370
RubyでKubernetesプログラミング
sat
PRO
4
160
Unsafe.BitCast のすゝめ。
nenonaninu
0
200
信頼されるためにやったこと、 やらなかったこと。/What we did to be trusted, What we did not do.
bitkey
PRO
0
2.2k
Amazon Q Developerで.NET Frameworkプロジェクトをモダナイズしてみた
kenichirokimura
1
200
AWS re:Invent 2024 recap in 20min / JAWSUG 千葉 2025.1.14
shimy
1
100
Featured
See All Featured
VelocityConf: Rendering Performance Case Studies
addyosmani
327
24k
Agile that works and the tools we love
rasmusluckow
328
21k
What's in a price? How to price your products and services
michaelherold
244
12k
CSS Pre-Processors: Stylus, Less & Sass
bermonpainter
356
29k
Art, The Web, and Tiny UX
lynnandtonic
298
20k
Visualization
eitanlees
146
15k
Six Lessons from altMBA
skipperchong
27
3.6k
Principles of Awesome APIs and How to Build Them.
keavy
126
17k
The Success of Rails: Ensuring Growth for the Next 100 Years
eileencodes
44
7k
Embracing the Ebb and Flow
colly
84
4.5k
Navigating Team Friction
lara
183
15k
The Psychology of Web Performance [Beyond Tellerrand 2023]
tammyeverts
45
2.3k
Transcript
ίʔυϨϏϡʔࠈ͔Β ൈ͚ग़ͨ͢ΊͷϖΞϓϩҭ๏ dֶशՊֶͷࢹ͔Βd ڭҭ৺ཧֶΛֶͿձ શຊֶशϓϩηεվળࢧԉڠ ӬγεςϜϚωδϝϯτ -BUUF XP祭り2020
ࣗݾհ • -BUUF • ΞδϟΠϧίʔν • ίʔνίϯαϧݚम৫։ൃΞδϟΠϧPOҭ • ݸਓࣄۀओ
ΞδΣϯμ •ϖΞϓϩ͕ҭʹྑ͍ཧ༝ •ޮՌΛߋʹߴΊΔ5JQT
ΞδΣϯμ •ϖΞϓϩ͕ҭʹྑ͍ཧ༝ •ޮՌΛߋʹߴΊΔ5JQT
ίʔυϨϏϡʔͬͯΔਓʂ
ίʔυϨϏϡʔͰ ҭͯΔ ग़དྷ্͕ͬͨͷ͕ Α͔͔ͬͨɺѱ͔ͬ ͨͷ͔͔Δ ಉ࣌ؒ͡ʹ ಇ͔ͳ͍͍ͯ͘
None
͜Μͳͷͣʔͬͱଓ͍͍ͯΔͷ ݟ͔͚ͨ͜ͱ͋Γ·͢ʁ
͍ͭʹͳͬͨΒͰ͖ΔΑ͏ʹͳΔͷʂʁ ·ͨɺ΄ͱΜͲશ෦Γͩ͠ʙ ઌഐʹਵ໎͔͚ͯ͠·ͬͯΔ
ίʔυϨϏϡʔͰ ҭͯΔ ग़དྷ্͕ͬͨͷ͕ Α͔͔ͬͨɺѱ͔ͬ ͨͷ͔͔Δ ಉ࣌ؒ͡ʹ ಇ͔ͳ͍͍ͯ͘
ؒҧ͑ͨΓํʹ ؾ͚ͮແ͍ ίʔυϨϏϡʔͰ ҭͯΔ ਖ਼͍͠Γํ͕ ͔Βͳ͍ Γ͠ʹͳΔ ग़དྷ্͕ͬͨͷ͕ Α͔͔ͬͨɺѱ͔ͬ ͨͷ͔͔Δ
ಉ࣌ؒ͡ʹ ಇ͔ͳ͍͍ͯ͘ Ͳ͏ͯ͠ɺͩΊͳ ϓϩάϥϜ͕Ͱ͖ ͔͔ͨΒͳ͍ ͍ͬͯͨ͜ͱͷ Ұ෦·ͨશ෦͕ ϜμʹͳΔ ϓϩάϥϛϯά͕ ݏ͍ʹͳΔ Ϟνϕʔγϣϯ Լ ࣗྗͰ ղܾͰ͖ͳ͍ ग़དྷ্͕Δͷ͕ ͍ Կ ಉࣦ͡ഊΛ͢Δ
ؒҧ͑ͨΓํʹ ؾ͚ͮແ͍ ίʔυϨϏϡʔͰ ҭͯΔ ਖ਼͍͠Γํ͕ ͔Βͳ͍ Γ͠ʹͳΔ ग़དྷ্͕ͬͨͷ͕ Α͔͔ͬͨɺѱ͔ͬ ͨͷ͔͔Δ
ಉ࣌ؒ͡ʹ ಇ͔ͳ͍͍ͯ͘ Ͳ͏ͯ͠ɺͩΊͳ ϓϩάϥϜ͕Ͱ͖ ͔͔ͨΒͳ͍ ͍ͬͯͨ͜ͱͷ Ұ෦·ͨશ෦͕ ϜμʹͳΔ ϓϩάϥϛϯά͕ ݏ͍ʹͳΔ Ϟνϕʔγϣϯ Լ ࣗྗͰ ղܾͰ͖ͳ͍ ग़དྷ্͕Δͷ͕ ͍ Կ ಉࣦ͡ഊΛ͢Δ ϖΞϓϩͰ ҭͯΔ Γ͠ʹ ͳΒͳ͍ ਖ਼͍͠Γํ͕ ͔Δ ؒҧ͑ͨΓํʹ ؾ͚ͮΔ
গ͚ͩ͠ཧͷ͠
ెఋੑ • ࢣঊͱఋࢠͰֶͿελΠϧ • ํʹఋࢠೖΓͯ͠ɺٕज़Λڭ͑ͯΒ͏ • ษڧΛڭ͑Δͱ͖ • ՈఉڭࢣελΠϧ •
͜ͷํ๏ߋʹਐԽ͍ͯͯ͠ ʮೝతెఋ੍ʯͱݺΕ͍ͯ·͢
ెఋੑ • ࢣঊͱఋࢠͰֶͿελΠϧ • ํʹఋࢠೖΓͯ͠ɺٕज़Λڭ͑ͯΒ͏ • ษڧΛڭ͑Δͱ͖ • ՈఉڭࢣελΠϧ •
͜ͷํ๏ߋʹਐԽ͍ͯͯ͠ ʮೝతెఋ੍ʯͱݺΕ͍ͯ·͢ ग़དྷ্͕ͬͨΒݟͤͯʁ ൷ධ͢Δ͔Β
ెఋੑ • ࢣঊͱఋࢠͰֶͿελΠϧ • ํʹఋࢠೖΓͯ͠ɺٕज़Λڭ͑ͯΒ͏ • ษڧΛڭ͑Δͱ͖ • ՈఉڭࢣελΠϧ •
͜ͷํ๏ߋʹਐԽ͍ͯͯ͠ ʮೝతెఋ੍ʯͱݺΕ͍ͯ·͢ ग़དྷ্͕ͬͨΒݟͤͯʁ ൷ධ͢Δ͔Β
ెఋੑ • ࢣঊͱఋࢠͰֶͿελΠϧ • ํʹఋࢠೖΓͯ͠ɺٕज़Λڭ͑ͯΒ͏ • ษڧΛڭ͑Δͱ͖ • ՈఉڭࢣελΠϧ •
͜ͷํ๏ߋʹਐԽ͍ͯͯ͠ ʮೝతెఋ੍ʯͬͯͷ͕͋Γ·͢ "MMBO$PMMJOT $PHOJUJWF"QQSFOUJDFTIJQ5FBDIJOHUIF$SBGUPG3FBEJOH 8SJUJOH BOE.BUIFNBUJDT5FDIOJDBM3FQPSU/P ग़དྷ্͕ͬͨΒݟͤͯʁ ൷ධ͢Δ͔Β
ଟ͘ͷจݙͰɺհ͞Ε͍ͯ·͢ /0 .. / 0
ೝతెఋ੍ͷεςοϓ Ͱ͖ͳ͍͜ͱΛ Ͱ͖ΔΑ͏ʹ͢Δɻ ՝Λఏڙ͢Δɻ ͓खຊΛݟͤΔ ؍͠ ϑΟʔυόοΫ͠ ࣮ࢪΛॿ͚Δ ࣗͷڵຯ͕࣋ͯΔ ෦Λ୳͢
ࣗͱ͓खຊΛ ൺֱͯ͠ߟ͑Δ ࣝࢥߟΛ આ໌Ͱ͖ΔΑ͏ʹ ͢Δ
ؒҧ͑ͨΓํʹ ؾ͚ͮແ͍ ίʔυϨϏϡʔͰ ҭͯΔ ਖ਼͍͠Γํ͕ ͔Βͳ͍ Γ͠ʹͳΔ ग़དྷ্͕ͬͨͷ͕ Α͔͔ͬͨɺѱ͔ͬ ͨͷ͔͔Δ
ಉ࣌ؒ͡ʹ ಇ͔ͳ͍͍ͯ͘ Ͳ͏ͯ͠ɺͩΊͳ ϓϩάϥϜ͕Ͱ͖ ͔͔ͨΒͳ͍ ͍ͬͯͨ͜ͱͷ Ұ෦·ͨશ෦͕ ϜμʹͳΔ ϓϩάϥϛϯά͕ ݏ͍ʹͳΔ Ϟνϕʔγϣϯ Լ ࣗྗͰ ղܾͰ͖ͳ͍ ग़དྷ্͕Δͷ͕ ͍ Կ ಉࣦ͡ഊΛ͢Δ ϖΞϓϩͰ ҭͯΔ Γ͠ʹ ͳΒͳ͍ ਖ਼͍͠Γํ͕ ͔Δ ؒҧ͑ͨΓํʹ ؾ͚ͮΔ
ϖΞϓϩ͕ҭʹྑ͍ཧ༝ Ͱ͖ͳ͍͜ͱΛ Ͱ͖ΔΑ͏ʹ͢Δɻ ՝Λఏڙ͢Δɻ ͓खຊΛݟͤΔ ؍͠ ϑΟʔυόοΫ͠ ࣮ࢪΛॿ͚Δ ࣗͷڵຯ͕࣋ͯΔ ෦Λ୳͢
ࣗͱ͓खຊΛ ൺֱͯ͠ߟ͑Δ ࣝࢥߟΛ આ໌Ͱ͖ΔΑ͏ʹ ͢Δ
࠷ॳ͔Βɺεςοϓ͕ຬͨ͞Ε͍ͯΔ ϖΞϓϩ͕ҭʹྑ͍ཧ༝ Ͱ͖ͳ͍͜ͱΛ Ͱ͖ΔΑ͏ʹ͢Δɻ ՝Λఏڙ͢Δɻ ͓खຊΛݟͤΔ ؍͠ ϑΟʔυόοΫ͠ ࣮ࢪΛॿ͚Δ ࣗͷڵຯ͕࣋ͯΔ
෦Λ୳͢ ࣗͱ͓खຊΛ ൺֱͯ͠ߟ͑Δ ࣝࢥߟΛ આ໌Ͱ͖ΔΑ͏ʹ ͢Δ
ޮՌΛߋʹߴΊΔ5JQT ͷʹΓ·͠ΐ͏
ΞδΣϯμ •ϖΞϓϩ͕ҭʹྑ͍ཧ༝ •ޮՌΛߋʹߴΊΔ5JQT
ޮՌΛߋʹߴΊΔ5JQT Ͱ͖ͳ͍͜ͱΛ Ͱ͖ΔΑ͏ʹ͢Δɻ ՝Λఏڙ͢Δɻ ͓खຊΛݟͤΔ ؍͠ ϑΟʔυόοΫ͠ ࣮ࢪΛॿ͚Δ ࣗͷڵຯ͕࣋ͯΔ ෦Λ୳͢
ࣗͱ͓खຊΛ ൺֱͯ͠ߟ͑Δ ࣝࢥߟΛ આ໌Ͱ͖ΔΑ͏ʹ ͢Δ
ࣦഊΛ͔ͯ͠Β͓खຊΛݟͤΔ • ؆୯ʹઆ໌͢Δͱʁ • ·ͣɺޙഐʹઌʹͬͯΒ͍·͠ΐ͏ • Ͱ͖ͳ͔ͬͨΒɺΘΓʹ͓खຊΛݟͤ·͠ΐ͏ • ྫ͑ʁ •
ػೳΛͭՃ͢Δͱͯ͠ʮͰ͖Δͱ͜Ζ·ͰͬͯΈͯʯͱ͓ئ͍͢Δ • ʮ͡Ό͋ɺ͓खຊݟͤΔͶʯͱɺ͍ͬͯΔͱ͜ΖΛݟͤΔ • ʮࣦഊͤ͞ΔݏͳઌഐʯͬͯࢥΘΕͨ͘ͳ͍ͷͰ͋Εɺઆ໌Λɻ • ͳͥɺྑ͍ͷʁ • ͕ࣗԿ͕Ͱ͖͍ͯͳ͍͔ཧղͰ͖ΔͷͰɺͲ͜ΛݟͨΒ͍͍͔Θ͔Δ • Ͱ͖ͳ͍ͱ͜Ζɺࣗͱҧ͏ͱ͜ΖʹࢹͰ͖Δ ͓खຊΛݟͤΔ جૅྗ 61
ޮՌΛߋʹߴΊΔ5JQT Ͱ͖ͳ͍͜ͱΛ Ͱ͖ΔΑ͏ʹ͢Δɻ ՝Λఏڙ͢Δɻ ͓खຊΛݟͤΔ ؍͠ ϑΟʔυόοΫ͠ ࣮ࢪΛॿ͚Δ ࣗͷڵຯ͕࣋ͯΔ ෦Λ୳͢
ࣗͱ͓खຊΛ ൺֱͯ͠ߟ͑Δ ࣝࢥߟΛ આ໌Ͱ͖ΔΑ͏ʹ ͢Δ
ॿ͚ͨ͜ͱϦετΛ࡞Δ • ؆୯ʹઆ໌͢Δͱʁ • ޙഐ͕Ͱ͖ͳ͔ͬͨΓɺؒҧ͑ͨΒॿ͚ͯ͋͛ͯɺ༰ΛϦετʹՃ • ҰॹʹαϙʔτݮΒ͍͚ͯ͠ΔΑ͏ʹೝࣝ߹ΘͤΛ͢Δ • ྫ͑ʁ •
ςΩετϑΝΠϧͰɺॿ͚ͨ͜ͱϦετͷϑΝΠϧΛ࡞Δ • (JUͷૢ࡞Ͱɺ༨ܭͳϑΝΠϧΛՃ͍ͯͨ͠ΒϦετʹೖΕΔ • ϓϩάϥϜͰɺྫ֎ॲཧʹൈ͚͕͋ͬͨΒϦετʹೖΕΔ • ͳͥɺྑ͍ͷʁ • ઌഐɺͰ͖Δ͚ͩॿ͚Δ෦ΛݮΒͯ͠ҰਓલʹͳͬͯΒ͍͍ͨ • ޙഐɺԿ͕Ͱ͖ΔΑ͏ʹͳΕ͍͍͔໌֬ʹͳΔ • ͳ͘ͳΒͳ͍߲͕͋Εɺڭ͑ํΛม͑ΔͳͲɺରࡦΛߟ͑ΒΕΔ Ͱ͖ͳ͍͜ͱΛ Ͱ͖ΔΑ͏ʹ͢Δɻ ՝Λఏڙ͢Δɻ جૅྗ 61
ग़དྷͳ͍͜ͱΛΓӽ͑Δ՝ • ؆୯ʹઆ໌͢Δͱʁ • ޙഐ͕Ͱ͖ͳ͍͜ͱ͕͋Εɺूதͯ͠औΓΊΔ՝Λఏڙ͢Δ • ྫ͑ʁ • (JUͷૢ࡞ͰɺϒϥϯνΛͲ͔͜ΒͬͨͷӨڹΛཧղ͍ͯ͠ͳ͔ͬͨ •
(JUͷૢ࡞ͰɺϒϥϯνͷΓସ͑࣌ʹૢ࡞͕Θ͔Βͣखؒऔ͍ͬͯͨ • 8FCαʔϏεʰ-FBSO(JU#SBODIJOHʱΛհ͢Δ • ͳͥɺྑ͍ͷʁ • Ͱ͖ͳ͍͜ͱɺࢥ͏ଘࣦഊͰ͖Δڥͷํ্͕ୡ͢Δ • ࣦഊ͠ͳ͍Ͱ͓͜͏ͱߟ͑͗͢Δͱɺ҆શࡦͰίϐϖʹ͢Δ • ྗ͠ͳ͍ͱɺίπΛ͔ͭΉલʹΕͯ͠·͏ • ʹճͰ͖Δ͜ͱ • ݄ʹճ͚ͩΔ͜ͱ Ͱ͖ͳ͍͜ͱΛ Ͱ͖ΔΑ͏ʹ͢Δɻ ՝Λఏڙ͢Δɻ جૅྗ 61
ग़དྷͳ͍͜ͱΛΓӽ͑Δ՝Λ • ؆୯ʹઆ໌͢Δͱʁ • ޙഐ͕Ͱ͖ͳ͍͜ͱ͕͋Εɺूதͯ͠औΓΊΔ՝Λఏڙ͢Δ • ྫ͑ʁ • (JUͷૢ࡞ͰɺϒϥϯνΛͲ͔͜ΒͬͨͷӨڹΛཧղ͍ͯ͠ͳ͔ͬͨ •
(JUͷૢ࡞ͰɺϒϥϯνͷΓସ͑࣌ʹૢ࡞͕Θ͔Βͣखؒऔ͍ͬͯͨ • 8FCαʔϏεʰ-FBSO(JU#SBODIJOHʱΛհ͢Δ • ͳͥɺྑ͍ͷʁ • Ͱ͖ͳ͍͜ͱɺࢥ͏ଘࣦഊͰ͖Δڥͷํ্͕ୡ͢Δ • ࣦഊ͠ͳ͍Ͱ͓͜͏ͱߟ͑͗͢Δͱɺ҆શࡦͰίϐϖʹ͢Δ • ྗ͠ͳ͍ͱɺίπΛ͔ͭΉલʹΕͯ͠·͏ • ʹճͰ͖Δ͜ͱ • ݄ʹճ͚ͩΔ͜ͱ Ͱ͖ͳ͍͜ͱΛ Ͱ͖ΔΑ͏ʹ͢Δɻ ՝Λఏڙ͢Δɻ
ग़དྷͳ͍͜ͱΛΓӽ͑Δ՝ • ؆୯ʹઆ໌͢Δͱʁ • ޙഐ͕Ͱ͖ͳ͍͜ͱ͕͋Εɺूதͯ͠औΓΊΔ՝Λఏڙ͢Δ • ྫ͑ʁ • (JUͷૢ࡞ͰɺϒϥϯνΛͲ͔͜ΒͬͨͷӨڹΛཧղ͍ͯ͠ͳ͔ͬͨ •
(JUͷૢ࡞ͰɺϒϥϯνͷΓସ͑࣌ʹૢ࡞͕Θ͔Βͣखؒऔ͍ͬͯͨ • 8FCαʔϏεʰ-FBSO(JU#SBODIJOHʱΛհ͢Δ • ͳͥɺྑ͍ͷʁ • Ͱ͖ͳ͍͜ͱɺࢥ͏ଘࣦഊͰ͖Δڥͷํ্͕ୡ͢Δ • ࣦഊ͠ͳ͍Ͱ͓͜͏ͱߟ͑͗͢Δͱɺ҆શࡦͰίϐϖʹ͢Δ • ूத͠ͳ͍ͱɺίπΛ͔ͭΉલʹΕͯ͠·͏ • ʹճͰ͖Δ͜ͱ • ݄ʹճ͚ͩΔ͜ͱ Ͱ͖ͳ͍͜ͱΛ Ͱ͖ΔΑ͏ʹ͢Δɻ ՝Λఏڙ͢Δɻ جૅྗ 61
ޮՌΛߋʹߴΊΔ5JQT Ͱ͖ͳ͍͜ͱΛ Ͱ͖ΔΑ͏ʹ͢Δɻ ՝Λఏڙ͢Δɻ ͓खຊΛݟͤΔ ؍͠ ϑΟʔυόοΫ͠ ࣮ࢪΛॿ͚Δ ࣗͷڵຯ͕࣋ͯΔ ෦Λ୳͢
ࣗͱ͓खຊΛ ൺֱͯ͠ߟ͑Δ ࣝࢥߟΛ આ໌Ͱ͖ΔΑ͏ʹ ͢Δ
બͷཧ༝ΛਘͶΔ • ؆୯ʹઆ໌͢Δͱʁ • ޙഐ͕બΜͩํ๏ʹ͍ͭͯɺͳͥબΜͩͷ͔͏ • ଞͷํ๏Ͱμϝͳͷ͔ɺީิΛڍ͛ͯҙݟΛฉ͘ • ྫ͑ʁ •
ޙഐ͕ɺσʔλͷอଘͷͨΊʹ.Z42-ΛఏҊ͢Δ • ઌഐɺʮͲ͏ͯ͠3FEJTɺ42-JUFͰͳ͍ͷʯͱཧ༝Λฉ͍ͯΈΔ • ઌഐɺ͔͍ͬͯͯҙਤతʹฉ͍ͯΈΔ͜ͱͰޙഐͷཧղΛਂΊΔ • ͳͥɺྑ͍ͷʁ • ࣗͷબΜͩબࢶͷಛΛઆ໌͢Δ͜ͱͰɺཧղ͕ਂ·Δ • ผͷ໘ʹૺ۰ͨ͠ͱ͖ʹɺԠ༻͢Δ͜ͱ͕Ͱ͖Δ ࣝࢥߟΛ આ໌Ͱ͖ΔΑ͏ʹ ͢Δ Ԡ༻ྗ 61
·ͱΊ • ϖΞϓϩ͕ҭʹྑ͍ཧ༝ • ֶशՊֶͰྑ͍ͱ͞ΕΔೝతెఋ੍ͷ ࠷ॳͷεςοϓ͕ຬͨ͞Ε͍ͯΔ • ޮՌΛߋʹߴΊΔ5JQT • ࣦഊΛ͔ͯ͠Β͓खຊΛݟͤΔ
• ॿ͚ͨ͜ͱϦετΛ࡞ͬͯೝࣝΛ߹ΘͤΔ • ग़དྷͳ͍͜ͱΛΓӽ͑Δ՝Λఏڙ͢Δ • બͷཧ༝ΛਘͶΔ
• ͱɺ͍͔ͭ͘ͷ5JQTΛհ͖ͯ͠·ͨ͠ɻ
•͔͠͠ • ϖΞϓϩͨ͘͠ͳ͍ • ͜Ε·Ͱͷݫ͍͠ϑΟʔυόοΫͰؔੑ͕ྑ͘ͳ͍ • ઌഐ͕ޙഐʹରͯ͠ݫ͍͠ • ޙഐͷֶशʹର͢ΔΔؾ͕͍ •
ϓϩάϥϛϯάҎ֎ͷࣄͰࠔ͍ͬͯΔ • ͳͲͳͲ • ͏·͍͔͘ͳ͍͜ͱଟ͍ͱࢥ͍·͢ • ͦΜͳͱ͖͝૬ஊ͍ͩ͘͞ • ৬ʹݺΜͰ͍͚ͨͩΕ • ՝Λݟ͚ͭͯվળͷ͓ख͍͠·͢
•͔͠͠ • ϖΞϓϩͨ͘͠ͳ͍ • ͜Ε·Ͱͷݫ͍͠ϑΟʔυόοΫͰؔੑ͕ྑ͘ͳ͍ • ઌഐ͕ޙഐʹରͯ͠ݫ͍͠ • ޙഐͷֶशʹର͢ΔΔؾ͕͍ •
ϓϩάϥϛϯάҎ֎ͷࣄͰࠔ͍ͬͯΔ • ͳͲͳͲ • ͏·͍͔͘ͳ͍͜ͱଟ͍ͱࢥ͍·͢ • ͦΜͳͱ͖͝૬ஊ͍ͩ͘͞ • ৬ʹݺΜͰ͍͚ͨͩΕ • ՝Λݟ͚ͭͯվળͷ͓ख͍͠·͢