due to turbine wakes are influenced by [1] Inflow condition: wind direction, wind speed, turbulence intensity, turbulent stress [2] Wind turbine design: blade geometry, generator efficiency [3] Wind farm layout: turbine spacing, turbine siting density Accurate numerical prediction can provide insight into the characteristics of turbine wakes and power losses in a large wind farm. Challenges include turbulence modeling and turbine parameterization LES + actuator-disk models: Jimenez et al (2007, 2008, 2010), Ivanell et al (2009), Calaf et al (2010, 2011), Meyers and Meneveau (2011, 2013) [1] Turbulence modeling: large-eddy simulation (LES) technique [2] Turbine parameterizations: actuator-disk/-line/-surface models Porté-Agel et al (2000), Bou-Zeid et al (2005), Stoll and Porté-Agel (2006), Lu and Porté-Agel (2010, 2013) Sørensen and Kock (1995), Sørensen and Shen (2002), Shen et al (2009) 8 Rigorous validation studies for turbine wakes in turbulent boundary layer are needed
test section ►25 m/s (90 km/h) maximum velocity ► < 0.1 % free stream turbulence intensity ► 5:1 contraction ratio ► 130 kW fan power ► 16 levels of air temperature control ► 20 m floor temperature control (test section) ►[−10°C ; 120°C] air/floor temperature range ► 450 kW heating and cooling units
SANYO Solar Panels Vector Anemometer 3.45m Vector Wind Vane 3.36m Temperature RH Vindicator 55m 71m 90m 110m 150m 200m = deg R 53.6m R40.2m R 29.5m R 24.1m R 19.0m R 14.7m R LiDAR Vindicator has three laser beams shooting simultaneously
Pitch( ሶ ), Roll( ሶ ), Yaw( ሶ ) = + × + Motion correction(compensation) scheme (Edson et al, 1998) = , , : wind speed vector in the earth’s coordinate : transformation matrix for a rotation of the ship coordinate to the earth’s coordinate : angular velocity vector of the ship coordinate system : position vector of the wind measurement location with respect to the motion package : translational velocity vector of the ship with respect to the earth’s coordinate = , , : observed wind speed with respect to the ship coordinate
2 Δ ሚ ሚ ij 2 Δ = = ▪ Traditional Smagorinsky model ̶ Smagorinsky coefficient → dynamically compute based on the flow information Refs: Porté-Agel et al (2000); Stoll and Porté-Agel (2006) z/d z/d x/d x/d Wu and Porté-Agel (2011) Wu and Porté-Agel (2013) 33
Blade Element Vrel : relative velocity Vx : velocity at the rotor Ω : angular velocity α : angle of attack γ : twist angle projection Total (shaft) Torque: = σ ∙ Rotor Power: = ∙ Ω Power Output: = ∙ Ω r-V θ =Ω r(1+a’) L D Fx Fθ θ α φ γ F Vx = u(1-a) ~ x r θ x c Δr Actuator-disk model with rotation (ADM-R) 34
Integrating thrust force over time Non-uniform distribution of thrust Considering rotation effect Integrating the forces over time Actuator-disk model without rotation Actuator-disk model with rotation Jimenez et al (2007; 2008) Calaf et al (2010; 2011) Wu & Porté-Agel (2011, 2013) Sørensen & Kock (1995) Kasmi & Masson (2008) Wu & Porté-Agel (2011, 2013) Blade element theory 1D momentum theory Actuator-disk models (ADM) ADM-R cannot predict Ω and P Dynamic procedure: [1] Calculate and ; [2] Guess an initial value for Ω ; [3] Calculate the shaft torque Q using the ADM-R; [4] Calculate the new Ω based on the torque-speed relationship; [5] Calculate = 1 − Τ Ω Ω ; [6] Replace Ω with Ω [7] Return to [3] until < 0.01; [8] Compute the forces and power Ω r-V θ =Ω r(1+a’) L D Fx Fθ θ α φ γ F Vx = u(1-a) ~ x r θ x c Δr ADM-NR requires and 35
of the observed power data, which can cause an overestimation on the power output of downstream turbines in a narrow full wake condition (e.g. 270o±1o). Lines: simulated power Symbols: measured power Power prediction for different wind sectors
Turbines Radius Turbines Radius Turbines Radius Turbines Radius Case 1 1 80 31.23 d Case 2 2 60 31.23 d 20 10.41 d Case 3 3 44 31.23 d 28 18.74 d 8 6.25 d Case 4 4 36 31.23 d 24 21.86 d 16 13.43d 4 4.37 d Wind farm Horns Rev I Case 1 Case 2 Case 3 Case 4 Efficiency (%) 82.4 78.6 79.6 81.5 81.3