Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
第32回アソビワークショップ / session-32 Asobi-Workshop
Search
Loochs.org
July 18, 2021
Education
0
600
第32回アソビワークショップ / session-32 Asobi-Workshop
Loochs.org
July 18, 2021
Tweet
Share
More Decks by Loochs.org
See All by Loochs.org
R7年度プログラミング講座のサンプルプログラム/R7-programming-seminar-sample-program-20250727
loochsorg
0
17
ラズベリーパイをもっと働かせよう / Make Raspberrypi hard work more
loochsorg
0
10
R7年度プログラミング講座のサンプルプログラム/R7-programming-seminar-sample-program
loochsorg
0
46
Nakamura Shogakko Club Activity Session 4
loochsorg
0
200
Nakamura Shogakko Club Activity Session 3
loochsorg
0
62
第42回アソビワークショップ / session-42 Asobi-Workshop
loochsorg
0
390
第41回アソビワークショップ / session-41 Asobi-Workshop
loochsorg
0
250
Nakamura Shogakko Club Activity Session 1
loochsorg
0
36
第38回アソビワークショップ / session-38 Asobi-Workshop
loochsorg
0
270
Other Decks in Education
See All in Education
Adobe Express
matleenalaakso
1
8.1k
子どものためのプログラミング道場『CoderDojo』〜法人提携例〜 / Partnership with CoderDojo Japan
coderdojojapan
PRO
4
18k
1014
cbtlibrary
0
520
コマンドラインを見直そう(1995年からタイムリープ)
sapi_kawahara
0
660
悩める リーダー達に 届けたい書籍|レジリエントマネジメント 書籍イントロダクション-260126
mimoza60
0
240
Future Trends and Review - Lecture 12 - Web Technologies (1019888BNR)
signer
PRO
0
3.2k
HCI Research Methods - Lecture 7 - Human-Computer Interaction (1023841ANR)
signer
PRO
0
1.3k
TypeScript初心者向け完全ガイド
mickey_kubo
1
120
1111
cbtlibrary
0
270
沖ハック~のみぞうさんとハッキングチャレンジ☆~
nomizone
1
570
卒論の書き方 / Happy Writing
kaityo256
PRO
54
28k
2025年の本当に大事なAI動向まとめ
frievea
0
170
Featured
See All Featured
How to Grow Your eCommerce with AI & Automation
katarinadahlin
PRO
0
110
No one is an island. Learnings from fostering a developers community.
thoeni
21
3.6k
RailsConf 2023
tenderlove
30
1.3k
Public Speaking Without Barfing On Your Shoes - THAT 2023
reverentgeek
1
300
The MySQL Ecosystem @ GitHub 2015
samlambert
251
13k
Lightning talk: Run Django tests with GitHub Actions
sabderemane
0
110
Cheating the UX When There Is Nothing More to Optimize - PixelPioneers
stephaniewalter
287
14k
VelocityConf: Rendering Performance Case Studies
addyosmani
333
24k
Refactoring Trust on Your Teams (GOTO; Chicago 2020)
rmw
35
3.4k
Making Projects Easy
brettharned
120
6.6k
Getting science done with accelerated Python computing platforms
jacobtomlinson
2
110
10 Git Anti Patterns You Should be Aware of
lemiorhan
PRO
659
61k
Transcript
ୈճ ΞιϏϫʔΫγϣοϓ d!·ͪͽ͋
ຊͷࢿྉҎԼͷϦϯΫઌ͔Β IUUQTTQFBLFSEFDLDPNMPPDITPSH
ʮϧʔΫεʯͬͯͳΜ͚ͩͬ w ϧʔΫεʢ-PPDITʣٯ͔ΒಡΉͱεΫʔϧʢ4DIPPMʣʹͳΔ w ʮֶͦͦߍͬͯͳΜ͚ͩͬʁʯˡΈΜͳͬͯΔʁ w FHʮษڧΛ͢Δͱ͜ΖͰ͢ʯˡຊʹͦ͏ʁ w ϧʔΫεʮֶߍͱԿ͔ʯΛߟ͑͜Ε͔ΒͷֶߍΛ࡞Δ৫ w
ͦͦʮֶߍ͍Βͳ͍આʯ͋ΓಘΔ
ΞιϏϫʔΫγϣοϓʹ͍ͭͯ w ΈΜͳ͕Γ͍ͨ͜ͱͷ୳ٻɾ࣮ݱΛࢧԉͰ͖ΔΛ࡞Γ͍ͨ w ͦͷதͷʮ༡ͼʯ͔ΒʮֶͼʯΛײͯ͡΄͍͠ w αϙʔτ͢ΔզʑେਓઈࢍʮֶͼʯதͰ͢ w ϓϩάϥϛϯάͦͷதͷखஈͷҰͭͰ͔͋͠Γ·ͤΜ
ʮ༡ͼʯͷཁૉ w 3ɾΧΠϤϫɹʮ༡ͼͱਓؒʯʢ͜͜Ͱʮ༡ͼͷ̐ྨʯͱ͍ͯ͠Δʣ w େਓʮ༡ͼʯ˺ʮڝ૪ʯͱצҧ͍͕ͪ͠ͳؾ͕͍ͯ͠Δ ڝ૪ ʢَͬ͜͝ɹͱ͔ʣ ۮવ ʢαΠίϩɹͱ͔ʣ ٖଶ
ʢਅࣅͬ͜ɹͱ͔ʣ Ί·͍ ʢάϧάϧόοτɹͱ͔ʣ ϑΝογϣϯγϣʔ ๅ୳͠ήʔϜ νΩϯϨʔε
ϧʔΫε͕͍ͩ͡ʹ͍ͯ͠Δ͜ͱ ΰʔϧ ΰʔϧ ;ͭʔͷେਓ͕͍ͨͪͩ͡ʹ͢Δ͜ͱ ϧʔΫε͕͍ͩ͡ʹ͢Δ͜ͱ
ࠓͷࣾձͷԿʁ Ͳ͏ͨ͠Βྑ͘ͳΔʁʁ w w ϧʔΫεࠓͷֶߍڭҭγεςϜ ʮෆࣗ༝ͰෆެฏͰ࣌Εʯͩͱࢥͬͯ·͢ w ͜ΕγεςϜͦͷͷ͕Ͱ͋Γʮઌੜ͕ʙʯͱ
͔ʮੜె͕ʙʯͳͲͱ͍͏ͭΓҰ͋Γ·ͤΜ w ΞΠσΟΞ w ͦͷͨΊʹʮࣗ༝ͰެฏͰ࠷ઌͳʯֶͼͷΛ ఏڙ͠·͢ʢΞιϏϫʔΫγϣοϓʣ ͱΞΠσΟΞ ύζϧʹࣅ͍ͯΔ ΞΠσΟΞ ֶߍڭҭγεςϜ ʮෆࣗ༝ͰෆެฏͰ࣌Εʯ ΞιϏϫʔΫγϣοϓ
ࣗݾհᶃ w Ωονʔʢ!LJDIJOPTVLFZʣ w ݪ٢೭ॿʢ;͘Β͖ͪͷ͚͢ʣ w ࠷ۙͷτϨϯυ w εψʔϐʔ෩ͷֆΛඳ͘͜ͱ
·ʔ͘Μɹࣗݾհ ࣸਅ ໊લ ɿ ٶాɹਅߦʢΈͨɹ·͞Ώ͖ʣ ग़ ɿ Ἒݝͻͨͪͳ͔ࢢ ࣄ ɿ
ࣗಈंͷاըʢ͓ۚͷܭࢉʣ झຯ ɿ ిࢠ࡞ɺɺϓϩάϥϛϯά ΩϟϯϓɺΓɺຍ ϋϚ͍ͬͯΔ͜ͱ ϐΞϊʢઍຊࡩʣɺڕࡹ͖ before after
͋ΒͨͳΞΠσΟΞͧͧ͘͘ͱ
͋ΒͨͳΞΠσΟΞͧͧ͘͘ͱ
ຊΛ࡞Γ͍ͨʁ
͡Ίʹ͓ئ͍͕͋Γ·ͯ͠ɾɾɾ w ʮ͜ΕͳΒϒϩάʹ্͛ͯྑ͍Αʯͱ͍͏ΠϕϯτதͷࣸਅΛຕɺఏڙͯ͠ ͍͚ͨͩΔͱͱʔͬͯॿ͔Γ·͢ʢࣸਅ͕ͳ͍ͱϒϩά࡞͕͍͠ʣ
ࠓΓ͍ͨ͜ͱ w ϋϯυύϫʔͰϩϘοτΛಈ͔ͦ͏NJO w ·ʔ͘ΜͷՊֶ࣮ݧNJO
ϋϯυύϫʔͰ ϩϘοτΛಈ͔ͦ͏
͓͠ͳ͕͖ w લճͷৼΓฦΓNJO w ͱΓ͋͑ͣಈ͔͢ɺϨʔεNJO w ͜ͷϓϩάϥϜԿΛ͍ͯ͠Δͷ͔ʁʢ̏ੜ͚ʣNJO w ϨʔεNJO w
ͬͱ໘ന͍͜ͱʹ͑ͳ͍͔ʁNJO
͜ͷͳ͕ͧͱ͚Δ͔ͳʁʢ࣍ճΓ·͢ʣ
͜ͷݱΛʮϋϯυύϫʔʯͱ͍͏ݴ༿Λ ͬͯઆ໌͢Δͱͨ͠Βɾɾɾʁ
ࠓճඞཁͳͷ w ϚοΫΠʔϯɺϚΠΫϩϏοτ w ͋ͱ͏ҰͭԿ͔ͳʁ w ʮϋϯυύϫʔʂʯͳΜ͚ͩͲɺ͏ͪΐͬͱ۩ମత ʹ͍͏ͱɾɾɾʁ ਐΊʂ ਐΉ
ύϫʔ ʢిؾʣ ಈ͚ʂ
ࠓճඞཁͳͷ
ࠓճඞཁͳͷ w ϚοΫΠʔϯɺϚΠΫϩϏοτ w ϚΠΫϩϏοτʢͱిʣ ਐΊʂ ਐΉ ύϫʔ ʢిؾʣ ಈ͚ʂ
·ͣಈ͔ͯ͠ΈΑ͏ ࣈ Θͳ͍ ϚοΫΠʔϯͷಈ͘ εϐʔυʢʣ ϚοΫΠʔϯͷ ಈ࣌ؒ͘ NJDSPCJUͱͷଓΛ Εͳ͍Α͏ʹʂ
͜ͷϓϩάϥϜԿΛ͍ͯ͠Δͷ͔ʁ ̏ੜ͚ ࣈ Θͳ͍ 2ɿͲͷϒϩοΫ͕Կͷ໋ྩΛ͍ͯ͠Δʁ
͜ͷϓϩάϥϜԿΛ͍ͯ͠Δͷ͔ʁ ̏ੜ͚ ࣈ Θͳ͍ ޙΖʹਐΉ લʹਐΉ ӈʹۂ͕Δ ࠨʹۂ͕Δ
͜ͷϓϩάϥϜԿΛ͍ͯ͠Δͷ͔ʁ ̏ੜ͚ ϚοΫΠʔϯͷಈ͘ εϐʔυʢʣ ϚοΫΠʔϯͷ ಈ࣌ؒ͘ Ϟʔλʔ Ϟʔλʔ Ϟʔλʔ Ϟʔλʔ
Ϟʔλʔ Ϟʔλʔ ࠨӈΛɹɹ લʹɹɹ ࠨӈΛɹɹ ޙΖʹɹɹ ࠨΛɹɹ ӈΛɹɹ ࠨΛɹɹ ӈΛɹɹ લʹɹɹ ޙΖʹɹɹ લʹɹɹ ޙΖʹɹɹ 2ɿͦΕͧΕͲΜͳϒϩοΫ͕ඞཁʁ ͰਐΉɹɹ
͜ͷϓϩάϥϜԿΛ͍ͯ͠Δͷ͔ʁ ̏ੜ͚ ϚοΫΠʔϯͷಈ͘ εϐʔυʢʣ ϚοΫΠʔϯͷ ಈ࣌ؒ͘ Ϟʔλʔ Ϟʔλʔ Ϟʔλʔ Ϟʔλʔ
Ϟʔλʔ Ϟʔλʔ ࠨӈΛɹɹ લʹɹɹ ࠨӈΛɹɹ ޙΖʹɹɹ ࠨΛɹɹ ӈΛɹɹ ࠨΛɹɹ ӈΛɹɹ લʹɹɹ ޙΖʹɹɹ લʹɹɹ ޙΖʹɹɹ 2ɿͦΕͧΕͲΜͳϒϩοΫ͕ඞཁʁ ͰਐΉɹɹ
͜ͷϓϩάϥϜԿΛ͍ͯ͠Δͷ͔ʁ ̏ੜ͚ ϚοΫΠʔϯͷಈ͘ εϐʔυʢʣ ϚοΫΠʔϯͷ ಈ࣌ؒ͘ Ϟʔλʔ Ϟʔλʔ Ϟʔλʔ Ϟʔλʔ
Ϟʔλʔ Ϟʔλʔ ࠨӈΛɹɹ લʹɹɹ ࠨӈΛɹɹ ޙΖʹɹɹ ࠨΛɹɹ ӈΛɹɹ ࠨΛɹɹ ӈΛɹɹ લʹɹɹ ޙΖʹɹɹ લʹɹɹ ޙΖʹɹɹ 2ɿͦΕͧΕͲΜͳϒϩοΫ͕ඞཁʁ ͰਐΉɹɹ
͜ͷϓϩάϥϜԿΛ͍ͯ͠Δͷ͔ʁ ̏ੜ͚ ϚοΫΠʔϯͷಈ͘ εϐʔυʢʣ ϚοΫΠʔϯͷ ಈ࣌ؒ͘ Ϟʔλʔ Ϟʔλʔ Ϟʔλʔ Ϟʔλʔ
Ϟʔλʔ Ϟʔλʔ ࠨӈΛɹɹ લʹɹɹ ࠨӈΛɹɹ ޙΖʹɹɹ ࠨΛɹɹ ӈΛɹɹ ࠨΛɹɹ ӈΛɹɹ લʹɹɹ ޙΖʹɹɹ લʹɹɹ ޙΖʹɹɹ 2ɿͦΕͧΕͲΜͳϒϩοΫ͕ඞཁʁ ͰਐΉɹɹ
͜ͷϓϩάϥϜԿΛ͍ͯ͠Δͷ͔ʁ ̏ੜ͚ ϚοΫΠʔϯͷಈ͘ εϐʔυʢʣ ϚοΫΠʔϯͷ ಈ࣌ؒ͘ Ϟʔλʔ Ϟʔλʔ Ϟʔλʔ Ϟʔλʔ
Ϟʔλʔ Ϟʔλʔ ࠨӈΛɹɹ લʹɹɹ ࠨӈΛɹɹ ޙΖʹɹɹ ࠨΛɹɹ ӈΛɹɹ ࠨΛɹɹ ӈΛɹɹ લʹɹɹ ޙΖʹɹɹ લʹɹɹ ޙΖʹɹɹ ͰਐΉɹɹ 2ɿಈ࣌ؒ͘Λ͍ͤͬͯ͢Δʹʁ
͜ͷϓϩάϥϜԿΛ͍ͯ͠Δͷ͔ʁ ̏ੜ͚ ϚοΫΠʔϯͷಈ͘ εϐʔυʢʣ ϚοΫΠʔϯͷ ಈ࣌ؒ͘ Ϟʔλʔ Ϟʔλʔ Ϟʔλʔ Ϟʔλʔ
Ϟʔλʔ Ϟʔλʔ ࠨӈΛɹɹ લʹɹɹ ࠨӈΛɹɹ ޙΖʹɹɹ ࠨΛɹɹ ӈΛɹɹ ࠨΛɹɹ ӈΛɹɹ લʹɹɹ ޙΖʹɹɹ લʹɹɹ ޙΖʹɹɹ ͰਐΉɹɹ 2ɿಈ࣌ؒ͘Λ͍ͤͬͯ͢Δʹʁ
ୈճΞιϏϫʔΫγϣοϓ ݄!·ͪͽ͋ தʹؾΛ͚ͭͯʂ ͦͯ͠ୈճ݄͔Β
None