守りたいデータがある メルペイ クレジットスコアのこれからの話など / merpay-3

守りたいデータがある メルペイ クレジットスコアのこれからの話など / merpay-3

2018/9/5 に開催された「merpay×M3 機械学習 NIGHT」の発表資料です。
https://mercari.connpass.com/event/97213/
#merpay_ml

F33a4157978cd59d5417ae69b0265943?s=128

M3 Engineering

September 05, 2018
Tweet

Transcript

  1. 守りたいデータがある メルペイ クレジットスコア これから 話 2018/09/05 merpay×M3 機械学習 NIGHT

  2. 自己紹介 @Hmj_kd メルペイ Machine Learning Engineer 北海道釧路市出身 釧路高専 情報工学科卒業後,東京 大学へ編集入学.

    理学部物理学科 Black Hole 境界上 微分幾何や Inflation 宇宙論あたりを勉強し いました. そ 後,諸般 事情 ,プログラマ,データ分析屋,機械学習 エンジニア等を経 ,現在 至る. 現在 仕事 ,飲み会幹事以外 Project内 タスク全 .
  3. 以前,こういった話をし おりました

  4. 今日 こん こ を話します ➔ クレジットスコアリングモデル 一般論(再掲) ➔ メルカリ ういったデータを分析

    利用 きるか ? ➔ メルペイ クレジットスコア これから つい
  5. クレジットスコアリングモデル 一般論

  6. クレジットスコアリングモデル 一般論 • そもそもクレジット(= 信用) ? 問題設定が難しい • 純粋 classificationだけ

    く,与信付与等 意思決定や損失額等 シ ミュレーションもある • Imbalanced Data • 個人情報や機微情報等 高い情報管理
  7. そもそもクレジット(= 信用) ? 一般的 , ”企業 融資”,”後払い サービス” 債務不履行リスク 評価,等

    “貸し出 しリスク” をクレジット 扱っ いる. 一方,中国 “Zhima信用” ,シェアバイク 利用状況や,ソーシャルネット ワーク つ がり, 必ずしもお金だけ 紐付いた信用だけ い.
  8. Imbalanced や シミュレーション等 問題性質 • 後払い 着目する ,顧客側 支払い義務が守られず ,支払いが滞る率

    が高すぎる そもそも後払い いうサービス運営が き い ◦ → 一般的 未払い者数 << 支払い者数 あり,Imbalanced る • (下図:例,スコア 融資限度額 関係図) ◦ 貸し出し リスク 分類問題だけ く,貸す場合 ▪ くらい 限度額を設定するか ? ▪ それ より債務不履行 る確率的 期待値 ?
  9. 個人情報や機微情報等 高い情報管理 こちら 後述いたします.

  10. メルカリ ういったデータを分析 利用 きるか ?

  11. メルカリ データ • 出品データ ◦ 商品画像 ◦ 商品名 ◦ 商品説明

    ◦ 商品状態 ◦ 商品価格 ◦ カテゴリ ◦ ブランド ◦ サイズ ◦ 配送方法 • サポートコミュニティ ◦ Q&Aデータ • お客さま 行動データ ◦ 商品検索 ◦ 商品タップ ◦ 商品へ 「いい 」 ◦ 商品へ コメント ◦ 価格交渉 ◦ 商品購入 ◦ 商品出品 ◦ 取引メッセージ ◦ 問い合わせ ◦ 商品通報 • ライブフリマ ◦ 動画データ 画像 / 動画 / テキスト / 行動ログ ,多岐 わたる大量 データ
  12. これから

  13. 検討したい 思っ いるこ 1. データ解析 プライバシー保護技術を取り入れる a. 悪意をもっ 情報を抜き取 ろう

    する人(攻撃者)から,大切 情報をまもる b. モデリング中 人為的 ミスを防ぐため も 2. スコア 特徴量 設計次第 ,(スコアが表示された世界 )利用される方た ち 行動が変わる可能性がある a. (状態, 行動, 報酬)等を考慮 きそう ,強化学習 が想像しやすい b. そもそも 議論もし いく必要 ある
  14. プライバシー保護技術 ... - プライバシー - 個人情報,要配慮情報, ... - プライバシ保護技術 -

    データ解析 おけるプライバシー 保護 - よう 定義される か - よう すれ 保護しつつデータ解析が きるか - いった問題を統計学,データ工学,暗号理論 観点
  15. 事例や用語 紹介 • Netflix 事例 ◦ Kaggle コンペティション 公開されたデータ(映画 レイティング)

    ,個人 特定を防ぐ処理 が施され いた. ◦ 一方 ,特定 背景情報をもつ ら 一意 特定 きる条件が統計的 導かれ,個人 特定 が高い確率 可能 ある 主張された. • k-匿名性 ◦ 例) 30代, 男性, 港区 企業 勤め いる , 関東在住, ...
  16. 安全性を定量的 議論したい Q. 秘密 入力 x つい f 出力 y

    = f(x) を公開した します. 攻撃者が y を得た き ,x が 程度推測されるか , よう 評価すれ よいか ? 引用 : データ解析 おけるプライバシー保護
  17. さいご

  18. チームメンバーを募集し おります ➔ [merpay]ソフトウェアエンジニア(Machine Learning) ➔ [merpay]エンジニアリングマネージャー(Machine Learning) もしご興味ありましたら @Hmj_kd

    ま ご連絡ください. 引用 : https://medium.com/moonshot/ataengineers-vs-data-scientist-13fce30812a7
  19. ご清聴ありが うございます !!