Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
めぐろLT#21 今年一番の仕事の成果
Search
マグロ隊長kinTV
November 15, 2024
Technology
0
98
めぐろLT#21 今年一番の仕事の成果
めぐろLT#21「今年一番の〇〇聞いてくれ」の登壇資料です。
https://meguro-lt.connpass.com/event/330012/
マグロ隊長kinTV
November 15, 2024
Tweet
Share
More Decks by マグロ隊長kinTV
See All by マグロ隊長kinTV
UDDのススメ - 拡張版 -
maguroalternative
1
600
遊戯王GX 丸藤兄弟から学ぶ成長
maguroalternative
1
79
UDDのすすめ
maguroalternative
0
1.1k
LINE Works Bot入門
maguroalternative
0
81
DiscordBotをPythonからGoへリプレイスした話
maguroalternative
1
140
Golangのデータベーステストフィクスチャ作成
maguroalternative
0
350
DiscordとLINEをPython+FastAPI+Dockerで連携させる
maguroalternative
0
400
就活体験記
maguroalternative
0
150
LINEBotCourse.pdf
maguroalternative
0
250
Other Decks in Technology
See All in Technology
リリース2ヶ月で収益化した話
kent_code3
1
310
生成AIによるソフトウェア開発の収束地点 - Hack Fes 2025
vaaaaanquish
34
15k
ユーザー課題を愛し抜く――AI時代のPdM価値
kakehashi
PRO
1
130
AI関数が早くなったので試してみよう
kumakura
0
330
Oracle Exadata Database Service on Cloud@Customer X11M (ExaDB-C@C) サービス概要
oracle4engineer
PRO
2
6.4k
「AIと一緒にやる」が当たり前になるまでの奮闘記
kakehashi
PRO
3
170
生成AIによるデータサイエンスの変革
taka_aki
0
3k
「Roblox」の開発環境とその効率化 ~DAU9700万人超の巨大プラットフォームの開発 事始め~
keitatanji
0
140
AIのグローバルトレンド 2025 / ai global trend 2025
kyonmm
PRO
1
160
いかにして命令の入れ替わりについて心配するのをやめ、メモリモデルを愛するようになったか(改)
nullpo_head
7
2.7k
アカデミーキャンプ 2025 SuuuuuuMMeR「燃えろ!!ロボコン」 / Academy Camp 2025 SuuuuuuMMeR "Burn the Spirit, Robocon!!" DAY 1
ks91
PRO
0
150
JAWS AI/ML #30 AI コーディング IDE "Kiro" を触ってみよう
inariku
3
400
Featured
See All Featured
Making Projects Easy
brettharned
117
6.3k
The Success of Rails: Ensuring Growth for the Next 100 Years
eileencodes
46
7.6k
How to Create Impact in a Changing Tech Landscape [PerfNow 2023]
tammyeverts
53
2.9k
Principles of Awesome APIs and How to Build Them.
keavy
126
17k
Cheating the UX When There Is Nothing More to Optimize - PixelPioneers
stephaniewalter
283
13k
StorybookのUI Testing Handbookを読んだ
zakiyama
30
6k
GraphQLとの向き合い方2022年版
quramy
49
14k
VelocityConf: Rendering Performance Case Studies
addyosmani
332
24k
Fashionably flexible responsive web design (full day workshop)
malarkey
407
66k
Statistics for Hackers
jakevdp
799
220k
KATA
mclloyd
32
14k
The Invisible Side of Design
smashingmag
301
51k
Transcript
1 今年一番の仕事の成果 2024/11/15 めぐろLT#21 株式会社くふうカンパニー 佐々木陽貴(マグロ)
2 ⾃⼰紹介 佐々木陽貴 (sasaki haruki / maguro) 24卒サーバーサイドエンジニア X: @sigumataityouda
GitHub: maguro-alternative 最近書く言語 Ruby,TypeScript,Go
3 ⾃⼰紹介 携わっているプロダクト 「トクバイ」 全国のスーパーやドラッグストアなどのチラ シが無料で見れるサービス サーバーは Ruby on Railsで構成
4 CSV生成バッチのパフォーマンス改善
5 CSV⽣成バッチのパフォーマンス改善 CSV⽣成バッチのパフォーマンス改善 • toB向けに提供していた商品やチラシなどのデータを提供する バッチ。 • 60~90分かかっていた処理を 14~19分ほどに短縮。
6 CSV⽣成バッチのパフォーマンス改善 背景 • 1時間に1回、FTP形式でデータ提供を行っていた。 ◦ つまり作成に 1時間以上かかってはいけない。 • 作成当初、処理時間は
15分ほどだった。 • しかし5月ごろから 50分へと増加し、ついに生成に 60分を超え 90分台に突入してしまう。 • 一旦マシンパワー増強で 50~60分に収めるが ... これやべーぞ ということで改善します
7 CSV⽣成バッチのパフォーマンス改善 調査 • 生成してた csvファイルは 5つ。 ◦ shop ◦
leaflet ◦ product ◦ product_classification ◦ product_classification_map • ログをつけて処理時間を計測。
8 CSV⽣成バッチのパフォーマンス改善 調査 • 内訳はこれぐらい。 ◦ shop 40s ◦ leaflet
2400s ◦ product 800s ◦ product_classification 20s ◦ product_classification_map 200s • チラシが一番時間がかかっている。 • 上から順番に作成しているので、並列で作れば解決するので は?
9 CSV⽣成バッチのパフォーマンス改善 調査 • だがやっぱり
10 CSV⽣成バッチのパフォーマンス改善 調査 • チラシに注目してみる ◦ shop 40s ◦ leaflet
2400s ◦ product 800s ◦ product_classification 20s ◦ product_classification_map 200s
11 CSV⽣成バッチのパフォーマンス改善 調査 • (チラシの部分で )クエリ取得に対して csvへの書き込みに時間 がかかりすぎている。 ◦ クエリ0.1秒に対し、
csv書き込みに 100秒以上(約1000倍)
12 CSV⽣成バッチのパフォーマンス改善 調査 • find_in_batchsで分けて読み込むため、クエリだったら若干時 間がかかる。 • でもcsv書き込みだけでなんでこんなに、、、?どうなってんの?
13 CSV⽣成バッチのパフォーマンス改善 調査 • 画像urlの書き込みで N+1が発生。
14 CSV⽣成バッチのパフォーマンス改善 調査 • 画像urlの書き込みで N+1が発生。 ◦ 画像urlの書き込みの際、事前読み込みに含まれていない モデルがあった。 ◦
find_in_batchsのバッチサイズごとにクエリが発行。 ▪ csvファイルを 1回生成するのに約 4万回ほどクエリ叩か れてた。 ◦ チラシのモデルに上記のモデルを追加して対応。
15 CSV⽣成バッチのパフォーマンス改善 調査 • 画像urlの書き込みで N+1が発生 ◦ 結果 チラシcsvの作成で約 6割の時間短縮
(約40分→約16分) 全体で約3割の時間短縮
16 CSV⽣成バッチのパフォーマンス改善 調査 • 目標の1時間以内に収めることには成功。 まだチラシcsvの最 適化は終了してな いぜ!!
17 CSV⽣成バッチのパフォーマンス改善 調査 • find_in_batchsでメモリの使用を抑えて csvへ書き込みしてい た。 ◦ 直接の原因ではなかったものの、一度に読み取る数を増や せばもっと改善するのでは?
◦ バッチサイズを 5倍にして試す。
18 CSV⽣成バッチのパフォーマンス改善 調査 • 結果 ◦ 約6割の時間短縮 (約16分→約6分) 全体はついに 20分台へ
19 CSV⽣成バッチのパフォーマンス改善 調査 • もうこれで良くない?でも ...
20 CSV⽣成バッチのパフォーマンス改善 調査 • 商品に注目 ◦ shop 40s ◦ leaflet
2400s → 385s ◦ product 800s ◦ product_classification 20s ◦ product_classification_map 200s
21 CSV⽣成バッチのパフォーマンス改善 調査 • クエリに対して書き込みに時間がかかりすぎている。 (クエリに対 して約2~3倍) • またN+1…?
22 CSV⽣成バッチのパフォーマンス改善 調査 • 結果
23 CSV⽣成バッチのパフォーマンス改善 調査 • というのも ◦ N+1は発生していない。 (クエリも最適化されている。 ) ◦
商品のcsvの書き込み量がただ多いだけ。 (多い時1つのク エリに対し 4万行) 容量なんと 900MB
24 CSV⽣成バッチのパフォーマンス改善 調査 • これ以上クエリの最適化は望めなさそう。 ◦ なので各処理を並列化させて終了。 ◦ 約28分→約18分に短縮!
25 感想 N+1怖い • 下手をすると業務に支障を与えることもある Railsのモデルの扱い⽅ちょっとわかった • モデルの事前読み込みの扱い方がイメージできていなかったた めいい例を体験できた ペアプロが⾮常にありがたかった
• チームに調査や改善手法まで手取り足取り教えていただいた 本当にありがとうございました。