Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
PredictionIOのPython対応計画
Search
Shinsuke Sugaya
July 03, 2017
Technology
0
4.1k
PredictionIOのPython対応計画
PredictionIOでPythonをどのように利用できるようにするかを説明します。
Shinsuke Sugaya
July 03, 2017
Tweet
Share
More Decks by Shinsuke Sugaya
See All by Shinsuke Sugaya
社内ドキュメント検索システム構築のノウハウ
marevol
0
390
LastaFluteでKotlinをはじめよう
marevol
0
390
日本最大級の求人検索エンジン「スタンバイ」を支える技術
marevol
2
950
Fess/Elasticsearchを使った業務で使える?全文検索への道
marevol
0
1.2k
PredictionIO構築入門
marevol
0
4.3k
全文検索システムFessを用いた 検索システム構築入門
marevol
0
2.9k
ESFluteによるElasticsearchでのO/Rマッパーを用いた開発
marevol
0
270
Elasticsearchベースの全文検索システムFess
marevol
0
240
LastaFluteに移行したFessとElasticsearch+ESFluteによるDBFlute環境
marevol
0
540
Other Decks in Technology
See All in Technology
AWSで推進するデータマネジメント
kawanago
0
840
Nstockの一人目エンジニアが 3年間かけて向き合ってきた セキュリティのこととこれから〜あれから半年〜
yo41sawada
0
180
Figma + Storybook + PlaywrightのMCPを使ったフロントエンド開発
yug1224
10
3.6k
250905 大吉祥寺.pm 2025 前夜祭 「プログラミングに出会って20年、『今』が1番楽しい」
msykd
PRO
1
220
役割は変わっても、変わらないもの 〜スクラムマスターからEMへの転身で学んだ信頼構築の本質〜 / How to build trust
shinop
0
150
Automating Web Accessibility Testing with AI Agents
maminami373
0
340
生成AI時代のデータ基盤
shibuiwilliam
4
2.1k
見てわかるテスト駆動開発
recruitengineers
PRO
6
2.4k
生成AI時代に必要な価値ある意思決定を育てる「開発プロセス定義」を用いた中期戦略
kakehashi
PRO
1
250
LLM翻訳ツールの開発と海外のお客様対応等への社内導入事例
gree_tech
PRO
0
430
ヘブンバーンズレッドのレンダリングパイプライン刷新
gree_tech
PRO
0
440
AI時代にPdMとPMMはどう連携すべきか / PdM–PMM-collaboration-in-AI-era
rakus_dev
0
250
Featured
See All Featured
Java REST API Framework Comparison - PWX 2021
mraible
33
8.8k
Visualizing Your Data: Incorporating Mongo into Loggly Infrastructure
mongodb
48
9.7k
Mobile First: as difficult as doing things right
swwweet
224
9.9k
VelocityConf: Rendering Performance Case Studies
addyosmani
332
24k
How To Stay Up To Date on Web Technology
chriscoyier
790
250k
The World Runs on Bad Software
bkeepers
PRO
70
11k
Chrome DevTools: State of the Union 2024 - Debugging React & Beyond
addyosmani
7
830
Building an army of robots
kneath
306
46k
Designing for Performance
lara
610
69k
Art, The Web, and Tiny UX
lynnandtonic
302
21k
The Language of Interfaces
destraynor
160
25k
The Web Performance Landscape in 2024 [PerfNow 2024]
tammyeverts
9
790
Transcript
Apache BizReach, Inc. Shinsuke Sugaya PredictionIO勉強会 第2回 Python対応計画
自己紹介 名前:菅谷 信介 会社:株式会社ビズリーチ AI室 興味があること: ・機械学習やDeep Learning等で解決方法を考える ・オープンソースのプロダクトを作る
Topics ・PredictionIOのPython対応を考える
PredictionIOの Python対応状況
Pythonを使えません…
がしかし… ・Pythonの機械学習系ライブラリは多い →scikit-learn, TensorFlow, Chainer,... ・Jupyterとかで分析したい →matplotlibで普通にグラフを書きたい この手のニーズは普通にあるのでは?
どう実現するか? PredictionIOは主に以下の機能がある ・イベントサーバ →RESTでデータを登録するので、Python対応不要 ・学習処理 →Spark上で動くので、Python対応必要 ・予測サーバ →Spark MLであれば、対応不要 →scikit-learnなどのモデルを作った場合は要対応
対応する箇所 ・学習処理 →PySparkを使えるようにする ・予測サーバ →Python独自のモデルへの対応 →(学習処理対応後に考える…)
PySpark
PySparkとは ・Sparkを実行するためのPython API ・pysparkを実行するとインタラクティブモードで起動 $ ./bin/pyspark Welcome to ____ __
/ __/__ ___ _____/ /__ _\ \/ _ \/ _ `/ __/ '_/ /__ / .__/\_,_/_/ /_/\_\ version 2.1.1 /_/ Using Python version 3.5.2 (default, Oct 31 2016 16:46:00) SparkSession available as 'spark'. >>>
PySparkとは ・Jupyter上でも実行できる!
PySparkの仕組み (ざっくりと…) pyspark spark-submit spark-class $ ./bin/pyspark ____ __ /
__/__ ___ _____/ /__ _\ \/ _ \/ _ `/ __/ '_/ /__ / .__/\_,_/_/ /_/\_\ version 2.1.1 /_/ >>> PYTHONSTARTUPを 指定してpythonを実行 Pythonを実行する コマンド引数を返却 Py4Jのサーバを起動 Sparkとの連携は Py4Jで行う
PIOとPySpark
前提 ・データはイベントサーバ上にある →RDDやDataFrameはPEventStoreから取る ・実行しているテンプレートの情報が必要 →pioコマンド経由で実行する
PIOでの仕組み pio pyspark pio-class $ ./bin/pyspark ____ __ / __/__
___ _____/ /__ _\ \/ _ \/ _ `/ __/ '_/ /__ / .__/\_,_/_/ /_/\_\ version 2.1.1 /_/ >>> pysparkを実行する コマンド引数を返却 pyspark spark-submit spark-class
開発 ・以下のブランチで開発を始めました https://github.com/jpioug/incubator-predictionio/tree/pyspark ・将来的にはApacheに入れる予定
課題 作業を始めると様々な壁に遭遇… ・Python上ではSpark上のPy4Jの参照 →pysparkは参照をラップして使いやすくしてる ・Python-Py4J-Java-Scalaでのアクセスが必要 →Pythonからアクセスしにくい ・PIOは主にRDDを使っている →DataFrameでない不便
これらの壁を乗り越えて pio pysparkを実行 $ export PYSPARK_PYTHON=$PYENV_ROOT/shims/python $ export PYSPARK_DRIVER_PYTHON=$PYENV_ROOT/shims/jupyter $
export PYSPARK_DRIVER_PYTHON_OPTS="notebook" $ ./bin/pio pyspark せっかくなので、Jupyterで実行する
動作確認 pysparkが読み込まれていればSparkContextがいる
便利関数作成 Scalaへアクセスする便利関数が必要
便利関数作成 PIOへアクセスする 便利関数が必要
PIOの初期化 pio trainの処理と同じように実行して初期化
DataFrameの取得 Spark側でDataFrameを作成して Python側ではpysparkのDataFrameでラップする
DataFrameでの表示 show()で内容を表示する
SQLでの表示 Viewを作成して、Spark SQLで取得
今後 ・コードを整理して、Apacheに入れたい ・予測サーバでの対応を考える ・続きはPIO勉強会#3で…
Apache Thank You