$30 off During Our Annual Pro Sale. View Details »
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
PredictionIOのPython対応計画
Search
Shinsuke Sugaya
July 03, 2017
Technology
0
4.2k
PredictionIOのPython対応計画
PredictionIOでPythonをどのように利用できるようにするかを説明します。
Shinsuke Sugaya
July 03, 2017
Tweet
Share
More Decks by Shinsuke Sugaya
See All by Shinsuke Sugaya
社内ドキュメント検索システム構築のノウハウ
marevol
0
420
LastaFluteでKotlinをはじめよう
marevol
0
430
日本最大級の求人検索エンジン「スタンバイ」を支える技術
marevol
2
980
Fess/Elasticsearchを使った業務で使える?全文検索への道
marevol
0
1.3k
PredictionIO構築入門
marevol
0
4.3k
全文検索システムFessを用いた 検索システム構築入門
marevol
0
3k
ESFluteによるElasticsearchでのO/Rマッパーを用いた開発
marevol
0
290
Elasticsearchベースの全文検索システムFess
marevol
0
260
LastaFluteに移行したFessとElasticsearch+ESFluteによるDBFlute環境
marevol
0
560
Other Decks in Technology
See All in Technology
因果AIへの招待
sshimizu2006
0
930
【CEDEC+KYUSHU2025】学生・若手必見!テクニカルアーティスト 大全 ~仕事・スキル・キャリアパス、TAの「わからない」を徹底解剖~
cygames
PRO
0
150
生成AIでテスト設計はどこまでできる? 「テスト粒度」を操るテーラリング術
shota_kusaba
0
530
AWS CLIの新しい認証情報設定方法aws loginコマンドの実態
wkm2
5
540
直接メモリアクセス
koba789
0
280
学習データって増やせばいいんですか?
ftakahashi
1
250
AWS re:Invent 2025で見たGrafana最新機能の紹介
hamadakoji
0
130
Playwright x GitHub Actionsで実現する「レビューしやすい」E2Eテストレポート
kinosuke01
0
410
Kiro Autonomous AgentとKiro Powers の紹介 / kiro-autonomous-agent-and-powers
tomoki10
0
320
“決まらない”NSM設計への処方箋 〜ビットキーにおける現実的な指標デザイン事例〜 / A Prescription for "Stuck" NSM Design: Bitkey’s Practical Case Study
bitkey
PRO
1
580
バグハンター視点によるサプライチェーンの脆弱性
scgajge12
3
1k
EM歴1年10ヶ月のぼくがぶち当たった苦悩とこれからへ向けて
maaaato
0
270
Featured
See All Featured
Facilitating Awesome Meetings
lara
57
6.7k
How To Stay Up To Date on Web Technology
chriscoyier
791
250k
Responsive Adventures: Dirty Tricks From The Dark Corners of Front-End
smashingmag
253
22k
Making the Leap to Tech Lead
cromwellryan
135
9.7k
Design and Strategy: How to Deal with People Who Don’t "Get" Design
morganepeng
132
19k
Intergalactic Javascript Robots from Outer Space
tanoku
273
27k
Reflections from 52 weeks, 52 projects
jeffersonlam
355
21k
Designing for humans not robots
tammielis
254
26k
Leading Effective Engineering Teams in the AI Era
addyosmani
8
1.3k
Documentation Writing (for coders)
carmenintech
76
5.2k
Writing Fast Ruby
sferik
630
62k
Sharpening the Axe: The Primacy of Toolmaking
bcantrill
46
2.6k
Transcript
Apache BizReach, Inc. Shinsuke Sugaya PredictionIO勉強会 第2回 Python対応計画
自己紹介 名前:菅谷 信介 会社:株式会社ビズリーチ AI室 興味があること: ・機械学習やDeep Learning等で解決方法を考える ・オープンソースのプロダクトを作る
Topics ・PredictionIOのPython対応を考える
PredictionIOの Python対応状況
Pythonを使えません…
がしかし… ・Pythonの機械学習系ライブラリは多い →scikit-learn, TensorFlow, Chainer,... ・Jupyterとかで分析したい →matplotlibで普通にグラフを書きたい この手のニーズは普通にあるのでは?
どう実現するか? PredictionIOは主に以下の機能がある ・イベントサーバ →RESTでデータを登録するので、Python対応不要 ・学習処理 →Spark上で動くので、Python対応必要 ・予測サーバ →Spark MLであれば、対応不要 →scikit-learnなどのモデルを作った場合は要対応
対応する箇所 ・学習処理 →PySparkを使えるようにする ・予測サーバ →Python独自のモデルへの対応 →(学習処理対応後に考える…)
PySpark
PySparkとは ・Sparkを実行するためのPython API ・pysparkを実行するとインタラクティブモードで起動 $ ./bin/pyspark Welcome to ____ __
/ __/__ ___ _____/ /__ _\ \/ _ \/ _ `/ __/ '_/ /__ / .__/\_,_/_/ /_/\_\ version 2.1.1 /_/ Using Python version 3.5.2 (default, Oct 31 2016 16:46:00) SparkSession available as 'spark'. >>>
PySparkとは ・Jupyter上でも実行できる!
PySparkの仕組み (ざっくりと…) pyspark spark-submit spark-class $ ./bin/pyspark ____ __ /
__/__ ___ _____/ /__ _\ \/ _ \/ _ `/ __/ '_/ /__ / .__/\_,_/_/ /_/\_\ version 2.1.1 /_/ >>> PYTHONSTARTUPを 指定してpythonを実行 Pythonを実行する コマンド引数を返却 Py4Jのサーバを起動 Sparkとの連携は Py4Jで行う
PIOとPySpark
前提 ・データはイベントサーバ上にある →RDDやDataFrameはPEventStoreから取る ・実行しているテンプレートの情報が必要 →pioコマンド経由で実行する
PIOでの仕組み pio pyspark pio-class $ ./bin/pyspark ____ __ / __/__
___ _____/ /__ _\ \/ _ \/ _ `/ __/ '_/ /__ / .__/\_,_/_/ /_/\_\ version 2.1.1 /_/ >>> pysparkを実行する コマンド引数を返却 pyspark spark-submit spark-class
開発 ・以下のブランチで開発を始めました https://github.com/jpioug/incubator-predictionio/tree/pyspark ・将来的にはApacheに入れる予定
課題 作業を始めると様々な壁に遭遇… ・Python上ではSpark上のPy4Jの参照 →pysparkは参照をラップして使いやすくしてる ・Python-Py4J-Java-Scalaでのアクセスが必要 →Pythonからアクセスしにくい ・PIOは主にRDDを使っている →DataFrameでない不便
これらの壁を乗り越えて pio pysparkを実行 $ export PYSPARK_PYTHON=$PYENV_ROOT/shims/python $ export PYSPARK_DRIVER_PYTHON=$PYENV_ROOT/shims/jupyter $
export PYSPARK_DRIVER_PYTHON_OPTS="notebook" $ ./bin/pio pyspark せっかくなので、Jupyterで実行する
動作確認 pysparkが読み込まれていればSparkContextがいる
便利関数作成 Scalaへアクセスする便利関数が必要
便利関数作成 PIOへアクセスする 便利関数が必要
PIOの初期化 pio trainの処理と同じように実行して初期化
DataFrameの取得 Spark側でDataFrameを作成して Python側ではpysparkのDataFrameでラップする
DataFrameでの表示 show()で内容を表示する
SQLでの表示 Viewを作成して、Spark SQLで取得
今後 ・コードを整理して、Apacheに入れたい ・予測サーバでの対応を考える ・続きはPIO勉強会#3で…
Apache Thank You