Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
PredictionIOのPython対応計画
Search
Shinsuke Sugaya
July 03, 2017
Technology
0
4.2k
PredictionIOのPython対応計画
PredictionIOでPythonをどのように利用できるようにするかを説明します。
Shinsuke Sugaya
July 03, 2017
Tweet
Share
More Decks by Shinsuke Sugaya
See All by Shinsuke Sugaya
社内ドキュメント検索システム構築のノウハウ
marevol
0
430
LastaFluteでKotlinをはじめよう
marevol
0
460
日本最大級の求人検索エンジン「スタンバイ」を支える技術
marevol
2
990
Fess/Elasticsearchを使った業務で使える?全文検索への道
marevol
0
1.3k
PredictionIO構築入門
marevol
0
4.3k
全文検索システムFessを用いた 検索システム構築入門
marevol
0
3k
ESFluteによるElasticsearchでのO/Rマッパーを用いた開発
marevol
0
290
Elasticsearchベースの全文検索システムFess
marevol
0
260
LastaFluteに移行したFessとElasticsearch+ESFluteによるDBFlute環境
marevol
0
590
Other Decks in Technology
See All in Technology
プロポーザルに込める段取り八分
shoheimitani
1
540
What happened to RubyGems and what can we learn?
mikemcquaid
0
310
Bill One急成長の舞台裏 開発組織が直面した失敗と教訓
sansantech
PRO
2
380
10Xにおける品質保証活動の全体像と改善 #no_more_wait_for_test
nihonbuson
PRO
2
320
Kiro IDEのドキュメントを全部読んだので地味だけどちょっと嬉しい機能を紹介する
khmoryz
0
200
Agile Leadership Summit Keynote 2026
m_seki
1
650
SchooでVue.js/Nuxtを技術選定している理由
yamanoku
3
120
Context Engineeringの取り組み
nutslove
0
370
AI駆動開発を事業のコアに置く
tasukuonizawa
1
290
Oracle Cloud Observability and Management Platform - OCI 運用監視サービス概要 -
oracle4engineer
PRO
2
14k
StrandsとNeptuneを使ってナレッジグラフを構築する
yakumo
1
120
CDKで始めるTypeScript開発のススメ
tsukuboshi
1
500
Featured
See All Featured
Pawsitive SEO: Lessons from My Dog (and Many Mistakes) on Thriving as a Consultant in the Age of AI
davidcarrasco
0
67
Primal Persuasion: How to Engage the Brain for Learning That Lasts
tmiket
0
260
SEO in 2025: How to Prepare for the Future of Search
ipullrank
3
3.3k
Build your cross-platform service in a week with App Engine
jlugia
234
18k
Stop Working from a Prison Cell
hatefulcrawdad
273
21k
I Don’t Have Time: Getting Over the Fear to Launch Your Podcast
jcasabona
34
2.6k
How to Grow Your eCommerce with AI & Automation
katarinadahlin
PRO
1
110
Dominate Local Search Results - an insider guide to GBP, reviews, and Local SEO
greggifford
PRO
0
78
30 Presentation Tips
portentint
PRO
1
220
A Modern Web Designer's Workflow
chriscoyier
698
190k
Practical Orchestrator
shlominoach
191
11k
Mozcon NYC 2025: Stop Losing SEO Traffic
samtorres
0
140
Transcript
Apache BizReach, Inc. Shinsuke Sugaya PredictionIO勉強会 第2回 Python対応計画
自己紹介 名前:菅谷 信介 会社:株式会社ビズリーチ AI室 興味があること: ・機械学習やDeep Learning等で解決方法を考える ・オープンソースのプロダクトを作る
Topics ・PredictionIOのPython対応を考える
PredictionIOの Python対応状況
Pythonを使えません…
がしかし… ・Pythonの機械学習系ライブラリは多い →scikit-learn, TensorFlow, Chainer,... ・Jupyterとかで分析したい →matplotlibで普通にグラフを書きたい この手のニーズは普通にあるのでは?
どう実現するか? PredictionIOは主に以下の機能がある ・イベントサーバ →RESTでデータを登録するので、Python対応不要 ・学習処理 →Spark上で動くので、Python対応必要 ・予測サーバ →Spark MLであれば、対応不要 →scikit-learnなどのモデルを作った場合は要対応
対応する箇所 ・学習処理 →PySparkを使えるようにする ・予測サーバ →Python独自のモデルへの対応 →(学習処理対応後に考える…)
PySpark
PySparkとは ・Sparkを実行するためのPython API ・pysparkを実行するとインタラクティブモードで起動 $ ./bin/pyspark Welcome to ____ __
/ __/__ ___ _____/ /__ _\ \/ _ \/ _ `/ __/ '_/ /__ / .__/\_,_/_/ /_/\_\ version 2.1.1 /_/ Using Python version 3.5.2 (default, Oct 31 2016 16:46:00) SparkSession available as 'spark'. >>>
PySparkとは ・Jupyter上でも実行できる!
PySparkの仕組み (ざっくりと…) pyspark spark-submit spark-class $ ./bin/pyspark ____ __ /
__/__ ___ _____/ /__ _\ \/ _ \/ _ `/ __/ '_/ /__ / .__/\_,_/_/ /_/\_\ version 2.1.1 /_/ >>> PYTHONSTARTUPを 指定してpythonを実行 Pythonを実行する コマンド引数を返却 Py4Jのサーバを起動 Sparkとの連携は Py4Jで行う
PIOとPySpark
前提 ・データはイベントサーバ上にある →RDDやDataFrameはPEventStoreから取る ・実行しているテンプレートの情報が必要 →pioコマンド経由で実行する
PIOでの仕組み pio pyspark pio-class $ ./bin/pyspark ____ __ / __/__
___ _____/ /__ _\ \/ _ \/ _ `/ __/ '_/ /__ / .__/\_,_/_/ /_/\_\ version 2.1.1 /_/ >>> pysparkを実行する コマンド引数を返却 pyspark spark-submit spark-class
開発 ・以下のブランチで開発を始めました https://github.com/jpioug/incubator-predictionio/tree/pyspark ・将来的にはApacheに入れる予定
課題 作業を始めると様々な壁に遭遇… ・Python上ではSpark上のPy4Jの参照 →pysparkは参照をラップして使いやすくしてる ・Python-Py4J-Java-Scalaでのアクセスが必要 →Pythonからアクセスしにくい ・PIOは主にRDDを使っている →DataFrameでない不便
これらの壁を乗り越えて pio pysparkを実行 $ export PYSPARK_PYTHON=$PYENV_ROOT/shims/python $ export PYSPARK_DRIVER_PYTHON=$PYENV_ROOT/shims/jupyter $
export PYSPARK_DRIVER_PYTHON_OPTS="notebook" $ ./bin/pio pyspark せっかくなので、Jupyterで実行する
動作確認 pysparkが読み込まれていればSparkContextがいる
便利関数作成 Scalaへアクセスする便利関数が必要
便利関数作成 PIOへアクセスする 便利関数が必要
PIOの初期化 pio trainの処理と同じように実行して初期化
DataFrameの取得 Spark側でDataFrameを作成して Python側ではpysparkのDataFrameでラップする
DataFrameでの表示 show()で内容を表示する
SQLでの表示 Viewを作成して、Spark SQLで取得
今後 ・コードを整理して、Apacheに入れたい ・予測サーバでの対応を考える ・続きはPIO勉強会#3で…
Apache Thank You