Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
インデックスのパフォーマンス調べてみた
Search
matumoto
October 15, 2022
Technology
0
48
インデックスのパフォーマンス調べてみた
2022/10月に行われた大LTでの発表資料です
イベントページはこちら
https://zli.connpass.com/event/261496/
matumoto
October 15, 2022
Tweet
Share
More Decks by matumoto
See All by matumoto
Goトランザクション処理
matumoto
0
19
いまいちどスライスの 挙動を見直してみる
matumoto
0
250
Go1.22のリリース予定の機能を見る
matumoto
0
56
GoのUnderlying typeについて
matumoto
0
130
Typed-nilについて
matumoto
0
160
GoのType Setsという概念
matumoto
0
12
GoのRateLimit処理の実装
matumoto
0
170
Webプッシュ通知触ってみた
matumoto
0
27
拡張ユークリッドの互除法の紹介
matumoto
0
130
Other Decks in Technology
See All in Technology
RustとWebAssemblyを使って高速な画像処理をWebアプリで実行しよう
rebonire626
0
110
SREによる隣接領域への越境とその先の信頼性
shonansurvivors
1
400
"君は見ているが観察していない"で考えるインシデントマネジメント
grimoh
4
1k
RAGのためのビジネス文書解析技術
eida
3
660
福岡新卒エンジニアの会
teba_eleven
1
190
リンクアンドモチベーション ソフトウェアエンジニア向け紹介資料 / Introduction to Link and Motivation for Software Engineers
lmi
4
300k
組み込みLinuxの時系列
puhitaku
4
1k
国土交通省 データコンペ参加者向け勉強会
takehikohashimoto
0
390
これまでの計測・開発・デプロイ方法全部見せます! / Findy ISUCON 2024-11-14
tohutohu
3
250
株式会社島津製作所_研究開発(集団協業と知的生産)の現場を支える、OSS知識基盤システムの導入
akahane92
1
180
[FOSS4G 2024 Japan LT] LLMを使ってGISデータ解析を自動化したい!
nssv
1
170
障害対応指揮の意思決定と情報共有における価値観 / Waroom Meetup #2
arthur1
3
260
Featured
See All Featured
Producing Creativity
orderedlist
PRO
341
39k
Building a Scalable Design System with Sketch
lauravandoore
459
33k
Adopting Sorbet at Scale
ufuk
73
9.1k
How to train your dragon (web standard)
notwaldorf
88
5.7k
Fantastic passwords and where to find them - at NoRuKo
philnash
50
2.9k
Making the Leap to Tech Lead
cromwellryan
133
8.9k
Why You Should Never Use an ORM
jnunemaker
PRO
54
9k
The Art of Programming - Codeland 2020
erikaheidi
52
13k
A Modern Web Designer's Workflow
chriscoyier
693
190k
[Rails World 2023 - Day 1 Closing Keynote] - The Magic of Rails
eileencodes
32
1.8k
Building Your Own Lightsaber
phodgson
102
6.1k
Writing Fast Ruby
sferik
627
61k
Transcript
インデックスの パフォーマンス 調べてみた matumoto
自己紹介 • ハンドルネーム:matumoto • 本名:松本響輝 • 学年:28期 • 趣味:イカᔦꙬᔨ •
やってきた技術: ◦ ゲーム作り ◦ フロントエンド ◦ AtCoder 水💧 • Twitter:@matumoto_1234
インデックスについて
インデックスとは? • インデックスとは、データの検索速度を向上させるために、どの行がどこにあるかを示した索引のこ と (https://www.techscore.com/tech/sql/15_01 より引用) • DBのテーブルに適切にインデックスを作ることで、パフォーマンス向上につながる • MySQLなどではCREATE
TABLEなどの文でインデックスを指定できる • 例. CREATE TABLE people ( id INT, name VARCHAR(512), age INT, INDEX name_INDEX (name) )
インデックスがどう使われるのか? • クエリに対応して、インデックスが自動で使われる • 例. ◦ peopleという名前の、こんなテーブルがあったとする id name age
1 matumoto 20 2 Aizu Taro 256 • SELECT id FROM people WHERE name = 'matumoto' というような、nameカラムに対しての検索クエリが きたとき、name_INDEXが使われる • SELECT idFROM people WHERE age = 20 というような、ageカラムに対しての検索クエリがきたらイン デックスは使われず、テーブル全体がそのまま読み込まれる
インデックスのパフォーマンス • インデックスは基本的に、ユニーク(重複がない)なもののほうがパフォーマンスが良い ◦ 例. PRIMARY KEYに基づくインデックスやUNIQUE制約のついたインデックスなど →なぜパフォーマンスが良いのか?(本題) →後述
インデックスの内部構造
インデックスを作るとどうなるか • インデックスを作ってもテーブル自体に変更が加わるわけではない • テーブルとは別にインデックス用の領域が取られ、まずはそこにアクセスする テーブル インデックス クエリ ソートとかはされていない! テーブルの場所が効率よく検索で
きるように保存されている
インデックスはどうなっているか • B-treeというようなデータ構造がよく使われている ◦ 厳密にはB+treeや、B*treeという改良版が使われることが多い
B-treeとは? • B-treeは平衡探索木の一種 ◦ よくある、平衡二分探索木とかとは違って多分木 ◦ BはBinaryではなく、Balanceの略 ◦ よくデータベース管理システムや、ファイルシステムで使用される 5
70 2 1 3 8 6 20 82 91 71 85 97
B-treeの特徴 • B-treeの特徴 ◦ 完全に平衡になっている(根から任意の葉までのパスの長さが一定 ) ◦ ノードにいくつかの値を持つ ◦ 一つのノードにm個以下の枝があるものをオーダー
mのB-treeと呼ぶ ◦ これはオーダー3のB-tree 5 70 2 1 3 8 6 20 82 91 71 85 97
挿入操作でB-treeの平衡はどうやって保っているの? • A. 気合い http://wwwa.pikara.ne.jp/okojisan/t23-java/index.html より図を引用
削除操作でB-treeの平衡はどうやって保っているの? • A. もちろん気合い http://wwwa.pikara.ne.jp/okojisan/t23-java/index.html より図を引用
B-treeの計算量 • B-treeの計算量 ◦ nを要素数とする ◦ 挿入:O(log n) ◦ 削除:O(log
n) ◦ 検索:O(log n) • AVL木や、赤黒木といった平衡二分探索木より速い? ◦ そんなことはなくて、遅い ◦ オーダーmのB-treeのノードを辿るときにO(m)回の値比較を行うので遅い ◦ データベース管理システムなどで使われるのは、「枝を辿るコスト」 >「値比較のコスト」な ため
B-treeの亜種 • B+treeというのが存在する ◦ 葉ノードがつながっており、範囲クエリに強い ◦ 葉ノードに実際のレコードが全て存在している ◦ MySQL/InnoDBなどで使われている https://www.cs.usfca.edu/~galles/visualization/BPlusTree.html
より図を引用
インデックスの パフォーマンス
インデックスのパフォーマンス • SQLクエリをEXPLAINすると表示される「type」 • 主なものとしては、以下がある ◦ const:PRIMARY KEYのインデックスやUNIQUEインデックスを使う。最速 ◦ eq_ref:JOINのときにPRIMARY
KEYのインデックスやUNIQUEインデックスを使う ◦ ref:ユニークでないインデックスを使ったときの等価検索など ◦ range:インデックスを用いた範囲検索 (0 <= key <= 10を満たすkeyを検索するなど) ◦ index:フルインデックススキャン。インデックス全体を見る ◦ all:フルテーブルスキャン。インデックスが使用されていない • なぜユニークだと早くなる傾向にあるのか?
インデックスのパフォーマンス • 検索で遅くなるのは葉ノードの走査が大きな原因の一つとしてある • 検索対象がユニークなら、見つけ次第終了できるが、ユニークでない場合は他の 葉ノードを見る必要がある • 例. 20を見つけたとしても、20が他にあるかもしれないので葉ノードを辿る必要があ る
https://www.cs.usfca.edu/~galles/visualization/BPlusTree.html より図を引用
まとめ
まとめ • インデックスの内部構造はB-treeがベースになっていることが多くて、計算量は だ いたい O(log n) ◦ 範囲クエリでk個の要素がみつかるときは、 O(log
n + k) 程度
ご静聴ありがとうございました