$30 off During Our Annual Pro Sale. View Details »

The Trees, the Forest, and the Passion for Prints

The Trees, the Forest, and the Passion for Prints

Matthew Lincoln

July 22, 2015
Tweet

More Decks by Matthew Lincoln

Other Decks in Research

Transcript

  1. The Trees, the Forest, and the
    Passion for Prints
    Networks of Dutch Print Production,
    1500-1750
    Matthew Lincoln
    University of Maryland
    @matthewdlincoln
    July 22, 2015
    Keystone Digital Humanities Conference

    View Slide

  2. Art objects in the British Museum, by type
    @matthewdlincoln

    View Slide

  3. “Sculptura in Æs”, from Johannes Stradanus’ Nova
    Reperta. Published by Philips Galle, c. 1588-1605.
    British Museum, London.
    What evidence can thousands
    of prints give us?

    View Slide

  4. Designer
    “Sculptura in Æs”, from Johannes Stradanus’ Nova
    Reperta. Published by Philips Galle, c. 1588-1605.
    British Museum, London.

    View Slide

  5. Engraver Designer
    “Sculptura in Æs”, from Johannes Stradanus’ Nova
    Reperta. Published by Philips Galle, c. 1588-1605.
    British Museum, London.

    View Slide

  6. Publisher
    Designer
    Engraver
    “Sculptura in Æs”, from Johannes Stradanus’ Nova
    Reperta. Published by Philips Galle, c. 1588-1605.
    British Museum, London.

    View Slide

  7. @matthewdlincoln

    View Slide

  8. @matthewdlincoln

    View Slide

  9. Peter Paul Rubens
    Schelte à Bolswert Gillis Hendricx
    designed
    @matthewdlincoln

    View Slide

  10. British Museum collections LOD: collection.britishmuseum.org
    Between 1500-1750:
    •  49,306 prints
    •  3,592 nodes: distinct designers, printmakers, and publishers
    •  76,697 edges: connections inferred from co-participation in an
    object
    Mining the museum for data
    @matthewdlincoln

    View Slide

  11. @matthewdlincoln
    Requisite Gephi mess:

    View Slide

  12. @matthewdlincoln
    1.  Create a set of subgraphs based on a rolling 10-year window:
    •  e.g. the 1640 subgraph contains only edges and nodes extant between
    1635 and 1645
    •  Edges (prints) exist between the start and end dates ascribed to an object
    o  Edges are unweighted to avoid biasing edge strength based on the
    number of surviving impressions (complicated!)
    •  Nodes (artists) exist during their life dates (also complicated!)
    2.  For each subgraph, calculate network metrics at the global, regional/national,
    and individual scale
    Dynamic network analysis

    View Slide

  13. @matthewdlincoln
    1. Did the northern Netherlands adopt and continue the
    highly-centralized Antwerp print production model
    through the seventeenth century? OR…
    2. Did rising Dutch prosperity instead support a more
    distributed network of local print markets?
    My question: centralized production

    View Slide

  14. é More centralized
    ê More distributed
    @matthewdlincoln
    Graph
    centrality score

    View Slide

  15. @matthewdlincoln
    é More centralized
    ê More distributed
    0.00
    0.05
    0.10
    0.15
    0.20
    1500 1550 1600 1650 1700 1750
    year
    graph centrality score
    é More centralized
    ê More distributed
    @matthewdlincoln

    View Slide

  16. 0.00
    0.05
    0.10
    0.15
    0.20
    1500 1550 1600 1650 1700 1750
    year
    graph centrality score
    @matthewdlincoln
    •  Rapid centralization around
    1580-1600
    •  Swift re-distribution within
    a generation, reverting to a
    low level by 1640s
    •  Economic contraction in
    1670s did not lead to an
    immediate return of
    centralization

    View Slide

  17. 0.00
    0.05
    0.10
    0.15
    0.20
    1500 1550 1600 1650 1700 1750
    year
    graph centrality score
    @matthewdlincoln
    Lucas van Leyden

    View Slide

  18. 0.00
    0.05
    0.10
    0.15
    0.20
    1500 1550 1600 1650 1700 1750
    year
    graph centrality score
    @matthewdlincoln
    Hendrick Goltzius

    View Slide

  19. 0.00
    0.05
    0.10
    0.15
    0.20
    1500 1550 1600 1650 1700 1750
    year
    graph centrality score
    @matthewdlincoln
    Claes Jansz.
    Visscher

    View Slide

  20. 0.00
    0.05
    0.10
    0.15
    0.20
    1500 1550 1600 1650 1700 1750
    year
    graph centrality score
    @matthewdlincoln
    Nicolaes de Bruyn

    View Slide

  21. 0.00
    0.05
    0.10
    0.15
    0.20
    1500 1550 1600 1650 1700 1750
    year
    graph centrality score
    @matthewdlincoln
    Abraham Blooteling

    View Slide

  22. 0.00
    0.05
    0.10
    0.15
    0.20
    1500 1550 1600 1650 1700 1750
    year
    graph centrality score
    @matthewdlincoln
    Bernard Picart

    View Slide

  23. centrality
    nodes
    edges
    0.00
    0.05
    0.10
    0.15
    0.20
    0
    100
    200
    300
    400
    0
    200
    400
    600
    1500 1550 1600 1650 1700 1750
    year
    value
    @matthewdlincoln

    View Slide

  24. centrality
    nodes
    edges
    0.00
    0.05
    0.10
    0.15
    0.20
    0
    100
    200
    300
    400
    0
    200
    400
    600
    1500 1550 1600 1650 1700 1750
    year
    value
    @matthewdlincoln
    It’s not just the number of artists.
    It’s how they connect.

    View Slide

  25. @matthewdlincoln
    BUT WAIT
    We want to avoid “just-so” stories!
    How do we know if this theoretical explanation makes sense?

    View Slide

  26. Simulation time
    @matthewdlincoln
    IF our simulated network metrics appear similar
    to the observed network metrics from our dataset, THEN
    we can feel more confident about our proposed explanation.
    Let’s create a simulation w/ actor behavior we are proposing.

    View Slide

  27. Erdos-Renyi: edges
    added totally at random
    Random graph generation
    Scale-Free: edges follow a
    power-law distribution
    @matthewdlincoln

    View Slide

  28. 0.00
    0.05
    0.10
    0.15
    0.20
    0.25
    1500 1550 1600 1650 1700 1750
    year
    graph centralization score
    model erdos−renyi scale−free3
    @matthewdlincoln

    View Slide

  29. 0.00
    0.05
    0.10
    0.15
    0.20
    0.25
    1500 1550 1600 1650 1700 1750
    year
    graph centralization score
    model erdos−renyi scale−free3
    @matthewdlincoln
    Printmakers needed expert collaborators

    View Slide

  30. 0.00
    0.05
    0.10
    0.15
    0.20
    0.25
    1500 1550 1600 1650 1700 1750
    year
    graph centralization score
    model erdos−renyi scale−free3
    @matthewdlincoln
    Networks deserve metrics, not just viz.
    They also need simulation, not just speculation

    View Slide

  31. Matthew Lincoln
    matthewlincoln.net
    @matthewdlincoln

    View Slide