Lock in $30 Savings on PRO—Offer Ends Soon! ⏳
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
Machine Learning : Introduction
Search
Meetkumar
August 31, 2018
Technology
0
27
Machine Learning : Introduction
Meetkumar
August 31, 2018
Tweet
Share
More Decks by Meetkumar
See All by Meetkumar
General_presentation.pdf
meetkumar
0
12
Other Decks in Technology
See All in Technology
ウェルネス SaaS × AI、1,000万ユーザーを支える 業界特化 AI プロダクト開発への道のり
hacomono
PRO
0
280
Kiro を用いたペアプロのススメ
taikis
3
980
特別捜査官等研修会
nomizone
0
260
AWSを使う上で最低限知っておきたいセキュリティ研修を社内で実施した話 ~みんなでやるセキュリティ~
maimyyym
2
1.9k
「図面」から「法則」へ 〜メタ視点で読み解く現代のソフトウェアアーキテクチャ〜
scova0731
0
420
AI駆動開発の実践とその未来
eltociear
1
410
1人1サービス開発しているチームでのClaudeCodeの使い方
noayaoshiro
2
510
AWSインフルエンサーへの道 / load of AWS Influencer
whisaiyo
0
160
re:Invent 2025 ~何をする者であり、どこへいくのか~
tetutetu214
0
240
.NET 10の概要
tomokusaba
0
120
Connection-based OAuthから学ぶOAuth for AI Agents
flatt_security
0
160
CARTAのAI CoE が挑む「事業を進化させる AI エンジニアリング」 / carta ai coe evolution business ai engineering
carta_engineering
0
2.1k
Featured
See All Featured
SEO for Brand Visibility & Recognition
aleyda
0
4.1k
[RailsConf 2023] Rails as a piece of cake
palkan
58
6.2k
Into the Great Unknown - MozCon
thekraken
40
2.2k
The #1 spot is gone: here's how to win anyway
tamaranovitovic
1
860
Building Flexible Design Systems
yeseniaperezcruz
330
39k
Exploring the relationship between traditional SERPs and Gen AI search
raygrieselhuber
PRO
2
3.4k
Helping Users Find Their Own Way: Creating Modern Search Experiences
danielanewman
31
3k
Documentation Writing (for coders)
carmenintech
77
5.2k
Why You Should Never Use an ORM
jnunemaker
PRO
61
9.6k
Refactoring Trust on Your Teams (GOTO; Chicago 2020)
rmw
35
3.3k
Fight the Zombie Pattern Library - RWD Summit 2016
marcelosomers
234
17k
A designer walks into a library…
pauljervisheath
210
24k
Transcript
Machine Learning 01 Meetkumar Patel
So What is Machine Learning ? •Automating automation •Getting computers
to program themselves •Writing software is the bottleneck •Let the data do the work instead!
Traditional Programming
Machine Learning
Magic? No, more like gardening •Seeds = Algorithms •Nutrients =
Data •Gardener = You •Plants = Programs
Sample Applications •Web search •Computational biology •Finance •E-commerce •Space exploration
•Robotics •Information extraction •Social networks •Debugging •[Your favorite area]
ML in a Nutshell •Tens of thousands of machine learning
algorithms •Hundreds new every year •Every machine learning algorithm has three components: –Representation –Evaluation –Optimization
Representation •Decision trees •Sets of rules / Logic programs •Instances
•Graphical models (Bayes/Markov nets) •Neural networks •Support vector machines •Model ensembles •Etc.
Evaluation •Accuracy •Precision and recall •Squared error •Likelihood •Posterior probability
•Cost / Utility •Margin •Entropy •K-L divergence •Etc.
Optimization •Combinatorial optimization –E.g.: Greedy search •Convex optimization –E.g.: Gradient
descent •Constrained optimization –E.g.: Linear programming
Types of Learning •Supervised (inductive) learning –Training data includes desired
outputs •Unsupervised learning –Training data does not include desired outputs •Semi-supervised learning –Training data includes a few desired outputs •Reinforcement learning –Rewards from sequence of actions
Inductive Learning •Given examples of a function (X, F(X)) •Predict
function F(X) for new examples X –Discrete F(X): Classification –Continuous F(X): Regression –F(X) = Probability(X): Probability estimation
What We’ll Cover •Supervised learning –Decision tree induction –Rule induction
–Instance-based learning –Bayesian learning –Neural networks –Support vector machines –Model ensembles –Learning theory •Unsupervised learning –Clustering –Dimensionality reduction
ML in Practice •Understanding domain, prior knowledge, and goals •Data
integration, selection, cleaning, pre-processing, etc. •Learning models •Interpreting results •Consolidating and deploying discovered knowledge •Loop
“Artificial Intelligence is the new electricity ” - Andrew Ng
Thanks! Contact us:
[email protected]