Upgrade to PRO for Only $50/Year—Limited-Time Offer! 🔥
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
SCM Solutions - Metrics, Trade-offs and Beyond -
Search
MIKIO KUBO
December 16, 2023
Business
1
210
SCM Solutions - Metrics, Trade-offs and Beyond -
Supply Chain PlanningのSolutionをMetricsとそのトレードオフを中心にまとめてみました.
ついでにMOAI技術を用いた新しいソリューションを提案しています.
MIKIO KUBO
December 16, 2023
Tweet
Share
More Decks by MIKIO KUBO
See All by MIKIO KUBO
The Fusion of Mathematical Optimization and AI (MOAI): History and Outlook (Final Version)
mickey_kubo
0
15
The Fusion of Mathematical Optimization and AI (MOAI): History and Outlook (Short Version)
mickey_kubo
1
16
The Fusion of Mathematical Optimization and AI (MOAI): History and Outlook
mickey_kubo
1
62
History and Future of MO+AI
mickey_kubo
1
53
History and Future of MO+AI (Fusion of Mathematical Optimization and Artificial Intelligence)
mickey_kubo
1
17
Next.js 入門解説: Reactとの決定的な違いとApp Routerに基づくモダンWeb開発
mickey_kubo
1
72
Google Antigravity and Vibe Coding: Agentic Development Guide
mickey_kubo
2
130
React完全入門
mickey_kubo
1
59
TypeScript初心者向け完全ガイド
mickey_kubo
1
68
Other Decks in Business
See All in Business
アッテル会社紹介資料/culture deck
attelu
11
15k
【DearOne】Dear Newest Member
hrm
2
13k
[NGA] カンパニーデック202511Ver.
ngaltd
PRO
1
460
ログラス会社紹介資料 新卒採用 ビジネス職[経営幹部候補]/ Loglass Company Deck
loglass2019
1
13k
Crisp Code inc.|コーポレート・サービス紹介 - Corporate & Services Introduction
so_kotani
0
330
明和不動産会社概要
prkoho
0
3.9k
知識の非対称性を越える_PdMがエキスパートと築く_信頼と対話の_意思決定の技術__.pdf
hirotoshisakata1
0
1.7k
フロントエンドにおける「型」の責任分解に対する1つのアプローチ
kinocoboy2
5
1.5k
Cierpa&Co._Culture Deck_202512
cierpa0905
PRO
0
4.4k
現場とIT部門の橋渡しをして3000人の開発者を救った話 / Talk. Collaborate. Support. Lessons from Bridging Field and IT
nttcom
2
1.3k
株式会社エンミッシュ 採用資料
enmish
1
250
元経営企画CSOのPMが語る 「プロダクトが創る事業戦略」のリアル
yjksmt
0
490
Featured
See All Featured
Thoughts on Productivity
jonyablonski
73
5k
Fireside Chat
paigeccino
41
3.7k
No one is an island. Learnings from fostering a developers community.
thoeni
21
3.5k
Practical Tips for Bootstrapping Information Extraction Pipelines
honnibal
25
1.6k
Build your cross-platform service in a week with App Engine
jlugia
234
18k
What’s in a name? Adding method to the madness
productmarketing
PRO
24
3.8k
Sharpening the Axe: The Primacy of Toolmaking
bcantrill
46
2.6k
What's in a price? How to price your products and services
michaelherold
246
12k
A Modern Web Designer's Workflow
chriscoyier
697
190k
How to Ace a Technical Interview
jacobian
280
24k
ピンチをチャンスに:未来をつくるプロダクトロードマップ #pmconf2020
aki_iinuma
128
54k
Unsuck your backbone
ammeep
671
58k
Transcript
SCM Solutions Metrics, Trade-offs and Beyond MOAI Tech Labo
SCM Solutions - Metrics ⼤規模インスタンスでの求解可能性 (size) 計算速度 (speed) 解の誤差 (error)
ロバスト性 (robustness) 拡張可能性 (extendability) 適応範囲 (range) 導⼊速度/費⽤ (implementation time/cost)
Size ⼤規模インスタンス(問題に数値を⼊れたもの)での求解可能性 ⼤規模でも解ける ⼩規模でないと 解けない Greedy Local search Exact solution
methods metaheuristics 実際のSCMの多くの問題は NP-hard Sizeの⼤きいインスタンスに対して ⾼速に誤差の⼩さい解を⽣成する ことは(おそらく)できない
Speed 計算速度 終了判定基準をユーザー が指定し,その中で最良解を探索する インスタンスのサイズに 対して指数オーダーで 計算量が増⼤ Greedy Local search
Exact solution methods metaheuristics インスタンスのサイズに 対する多項式オーダーで 計算が終わる
Error 解の誤差(精度 accuracy / 質 quality) ⼤きな相対誤差 Greedy Local search
Exact solution methods metaheuristics 厳密解もしくは 相対誤差の保証を もった解 途中で打ち切ることによって 近似解法としても使える 近似解法
Robustness ロバスト性 インスタンスが 変わると悪い解 を算出する Greedy Local search Exact solution
methods metaheuristics 様々なインスタンス が解ける(ただし 計算時間は変化) 少数のインスタンス に対して上⼿く動く 近似解法は,インスタンス パラメータの変化に弱い すべてのインスタンス テストしたインスタンス 新しいインスタンス
Spped, Size, Error のトレードオフ ⼩規模 ⼤規模 低速 ⾼速 Speed Size
誤差⼤ 厳密解(誤差⼩) Error Exact solution methods Greedy Local Search Metaheuristics Sizeの⼤きいインスタンスに対して ⾼速に誤差の⼩さい解を⽣成する ことは(おそらく)できない NP-困難性
パラダイムシフト すべてのインスタンスの集合 実際のインスタンスの集合 すべてのインスタンスに対して ⾼速に誤差の⼩さい解を⽣成する ことは(おそらく)できない たくさんの過去の 実際のインスタンス 過去のたくさんの実際問題の インスタンスと対応する解がある
対応する解 NP-困難性 すべてのインスタンスの集合 機械(深層)学習の利⽤ ?
MOAIによるNP-困難性の克服 ⼤規模でも解ける ⼩規模でないと 解けない 低速 ⾼速 Speed Size 誤差⼤ 厳密解(誤差⼩)
Error Exact solution methods Greedy Local Search Metaheuristics MOAI (機械学習+数理最適化) ⼤規模インスタンスに対する 誤差の⼩さい解を⾼速計算 +
Extendability 拡張可能性 問題の拡張が容易 単純でモジュール化 されたアルゴリズム 複雑でモジュール化されていない アルゴリズム 問題の拡張が難しい (もしくは多⼤な 追加費⽤/時間がかかる)
数理最適化モデリング⾔語で 記述可能な付加条件 数理最適化モデリング⾔語で 記述が難しい付加条件 買収によって様々な問題に対応 開発者の退職によってメンテが悪化 新しい機能の追加が不可能
Range 適応範囲 狭い: 特化した問題に 対するソリューション Optimind Lyna Logics Asprova Flexche
Forecast Pro SAP IBP Panasonic (Blue Yonder; JDA; i2) c3.ai o9solutions Coupa (Llamasoft) Optilogic 広い: SCMの幅広い範囲 をカバー Anaplan Streamline • 配送 • スケジューリング • 予測 に対する個別ソリューション • ネットワーク設計 • 配送 • 多段階在庫 • 予測 • 多段階在庫 • + ERP 得意分野はあるが ほとんどすべての機能 + ERP
Implementation time/cost 導⼊速度/費⽤ ⽐較的安価で短時間 Coupa (Llamasoft) ⾼価で時間がかかる プログラム設計者がすでに退職 Optilogic 数理最適化モデル
をユーザーに公開 DB Schema GUI プログラム設計者が現職
Extendability, Range, Impl. Timeのトレードオフ 拡張が容易 拡張が難しい Extendability 狭い 広い Range
安価で短時間 Implementation time/ cost ⾼価で時間がかかる SAP IBP Panasonic (BY) c3.ai o9solutions Optimind Lyna Logics Asprova Flexche Forecast Pro Coupa Optilogic Anaplan Streamline
MOAIソリューション 拡張が容易 拡張が難しい Extendability 狭い 広い Range 安価で短時間 Implementation time/
cost ⾼価で時間がかかる SAP IBP Panasonic (BY) c3.ai o9solutions Optimind Lyna Logics Asprova Flexche Forecast Pro Coupa Optilogic Anaplan Streamline + MOAI Supply Chain全体をカバー 最先端の最適化ソリューション モジュール化とAPI公開によって ユーザーがモデルを拡張可能