$30 off During Our Annual Pro Sale. View Details »
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
B3 コアタイム 第9回目 ( 2014年12月19日(金) )
Search
MIKAMI-YUKI
December 19, 2014
Education
0
140
B3 コアタイム 第9回目 ( 2014年12月19日(金) )
MIKAMI-YUKI
December 19, 2014
Tweet
Share
More Decks by MIKAMI-YUKI
See All by MIKAMI-YUKI
2016年_年次大会_発表資料
mikamiy
0
130
文献紹介_10_意味的類似性と多義解消を用いた文書検索手法
mikamiy
0
340
文献紹介_9_コーパスに基づく動詞の多義解消
mikamiy
0
120
文献紹介_8_単語単位による日本語言語モデルの検討
mikamiy
0
92
文献紹介_7_自動獲得した未知語の読み・文脈情報による仮名漢字変換
mikamiy
0
100
文献紹介_6_複数の言語的特徴を用いた日本語述部の同義判定
mikamiy
0
110
文献紹介_5_マイクロブログにおける感情・コミュニケーション・動作タイプの推定に基づく顔文字の推薦
mikamiy
0
140
文献紹介_4_結合価パターンを用いた仮名漢字変換候補の選択
mikamiy
0
410
文献紹介_3_絵本のテキストを対象とした形態素解析
mikamiy
1
420
Other Decks in Education
See All in Education
Evaluation Methods - Lecture 6 - Human-Computer Interaction (1023841ANR)
signer
PRO
0
1.2k
国際卓越研究大学計画|Science Tokyo(東京科学大学)
sciencetokyo
PRO
0
27k
The knowledge panel is your new homepage
bradwetherall
0
220
1202
cbtlibrary
0
140
Use Cases and Course Review - Lecture 8 - Human-Computer Interaction (1023841ANR)
signer
PRO
0
1.3k
附属科学技術高等学校の概要|Science Tokyo(東京科学大学)
sciencetokyo
PRO
0
2.9k
ロータリー国際大会について~国際大会に参加しよう~:古賀 真由美 会員(2720 Japan O.K. ロータリーEクラブ・(有)誠邦産業 取締役)
2720japanoke
1
740
HCI and Interaction Design - Lecture 2 - Human-Computer Interaction (1023841ANR)
signer
PRO
0
1.4k
外国籍エンジニアの挑戦・新卒半年後、気づきと成長の物語
hypebeans
0
650
焦りと不安を、技術力に変える方法 - 新卒iOSエンジニアの失敗談と成長のフレームワーク
hypebeans
1
600
【dip】「なりたい自分」に近づくための、「自分と向き合う」小さな振り返り
dip_tech
PRO
0
200
あなたの言葉に力を与える、演繹的なアプローチ
logica0419
1
240
Featured
See All Featured
Code Reviewing Like a Champion
maltzj
527
40k
The Power of CSS Pseudo Elements
geoffreycrofte
80
6.1k
KATA
mclloyd
PRO
33
15k
Fantastic passwords and where to find them - at NoRuKo
philnash
52
3.5k
Practical Tips for Bootstrapping Information Extraction Pipelines
honnibal
25
1.6k
Rebuilding a faster, lazier Slack
samanthasiow
85
9.3k
Understanding Cognitive Biases in Performance Measurement
bluesmoon
32
2.7k
Making the Leap to Tech Lead
cromwellryan
135
9.7k
JavaScript: Past, Present, and Future - NDC Porto 2020
reverentgeek
52
5.8k
Producing Creativity
orderedlist
PRO
348
40k
Build your cross-platform service in a week with App Engine
jlugia
234
18k
Performance Is Good for Brains [We Love Speed 2024]
tammyeverts
12
1.3k
Transcript
「自然言語処理の基礎」 2章:辞書とコーパス B3 三上侑城
概念階層 シソーラスのイメージ図 抽象的 もの 行動 ・・・・・ ・・・・・ ・・・・・ 人工物 ・・・・・
・・・・・ 乗り物 陸上の乗り物 海上の乗り物 空中の乗り物 飛行機 ・・・ ヘリコプタ バイク 鉄道 自動車 船 ・・・ ヨット
類似度の計算 • 類似度はシソーラスにおいて、近くに位置する単語 同士ほど類似度は高いとする。 • 調べたい2つの単語のシソーラス中での根か らの深さをそれぞれ , とし、2つの共通の 上位語の根からの深さを
とした時、式は以 下のようになる。 sim( , ) = × + ※ 0 ≦ sim( , ) ≦ 1
類似度の計算例 • 「船」と「ヨット」は、それぞれ 根から5の深さがあるため、 = , =5 にする。 • お互いの共通する一番最初の
語は「海上の乗り物」であり、 根から4の深さがあるため、 = 4 にする。 • 先ほどの式に代入すると、 sim( , ) = × + = × + = 0.8 となる。 抽象的 もの 行動 ・・・・・ ・・・・・ ・・・・・ 人工物 ・・・・・ ・・・・・ 乗り物 陸上の乗り物 海上の乗り物 空中の乗り物 飛行機 ・・・ ヘリコプタ バイク 鉄道 自動車 船 ・・・ ヨット 左図のシソーラスにおいて「船」と「ヨット」の類似度を求める
コーパス •電子化された言語データの蓄積物を 「コーパス(corpus)」という。 •収集したままの状態で、何も情報を付 加していないコーパスを 「生コーパス(raw corpus)」という。 •何らかの情報を付加したコーパスを 「タグ付きコーパス(tagged corpus)」と
いう。
タグ付きコーパス •何らかの情報を付加したコーパス であり、 「品詞」 「構文構造」 「語義」 「テキスト構造」 の、4つの情報が付加されているも のが多い。
言語の統計 •文字の連続を考えてみる。 →nグラム •通常n=2,3とすることが多い。 •ある文章や、その国の言語の 傾向がわかる。 •例題2.1をやるとわかりやすい。
機械学習 •訓練データを用いて機械学習を させ、分類器を用いて生データを 分類させることができる。 •機械学習手法として、 「サポートベクトルマシン」 「ナイーブベイズ分類器」 「決定木学習」 などがある。
機械学習 機械学習のプロセス図 クラス ラベル データ 訓練データ データ テストデータ 機械学習 アルゴリズム
分類器 クラス ラベル