Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
B3 コアタイム 第9回目 ( 2014年12月19日(金) )
Search
MIKAMI-YUKI
December 19, 2014
Education
0
140
B3 コアタイム 第9回目 ( 2014年12月19日(金) )
MIKAMI-YUKI
December 19, 2014
Tweet
Share
More Decks by MIKAMI-YUKI
See All by MIKAMI-YUKI
2016年_年次大会_発表資料
mikamiy
0
130
文献紹介_10_意味的類似性と多義解消を用いた文書検索手法
mikamiy
0
340
文献紹介_9_コーパスに基づく動詞の多義解消
mikamiy
0
120
文献紹介_8_単語単位による日本語言語モデルの検討
mikamiy
0
93
文献紹介_7_自動獲得した未知語の読み・文脈情報による仮名漢字変換
mikamiy
0
100
文献紹介_6_複数の言語的特徴を用いた日本語述部の同義判定
mikamiy
0
110
文献紹介_5_マイクロブログにおける感情・コミュニケーション・動作タイプの推定に基づく顔文字の推薦
mikamiy
0
140
文献紹介_4_結合価パターンを用いた仮名漢字変換候補の選択
mikamiy
0
410
文献紹介_3_絵本のテキストを対象とした形態素解析
mikamiy
1
420
Other Decks in Education
See All in Education
TeXで変える教育現場
doratex
0
8.2k
LotusScript でエージェント情報を出力してみた
harunakano
0
110
RGBでも蛍光を!? / RayTracingCamp11
kugimasa
2
330
1021
cbtlibrary
0
390
20251023@天童市いこう会
koshiba_noriaki
0
120
【洋書和訳:さよならを待つふたりのために】第2章 ガン特典と実存的フリースロー
yaginumatti
0
150
都市の形成要因と 「都市の余白」のあり方
sakamon
0
110
核軍備撤廃に向けた次の大きな一歩─核兵器を先には使わないと核保有国が約束すること
hide2kano
0
200
HCI and Interaction Design - Lecture 2 - Human-Computer Interaction (1023841ANR)
signer
PRO
0
1.5k
沖ハック~のみぞうさんとハッキングチャレンジ☆~
nomizone
1
550
MySmartSTEAM 2526
cbtlibrary
0
170
10分で学ぶ すてきなモナド
soukouki
1
130
Featured
See All Featured
Into the Great Unknown - MozCon
thekraken
40
2.2k
Heart Work Chapter 1 - Part 1
lfama
PRO
4
35k
Agile that works and the tools we love
rasmusluckow
331
21k
YesSQL, Process and Tooling at Scale
rocio
174
15k
Chrome DevTools: State of the Union 2024 - Debugging React & Beyond
addyosmani
9
1k
Understanding Cognitive Biases in Performance Measurement
bluesmoon
32
2.8k
Practical Orchestrator
shlominoach
190
11k
The Cost Of JavaScript in 2023
addyosmani
55
9.4k
Why You Should Never Use an ORM
jnunemaker
PRO
61
9.7k
Jess Joyce - The Pitfalls of Following Frameworks
techseoconnect
PRO
1
46
Measuring Dark Social's Impact On Conversion and Attribution
stephenakadiri
1
100
Designing for humans not robots
tammielis
254
26k
Transcript
「自然言語処理の基礎」 2章:辞書とコーパス B3 三上侑城
概念階層 シソーラスのイメージ図 抽象的 もの 行動 ・・・・・ ・・・・・ ・・・・・ 人工物 ・・・・・
・・・・・ 乗り物 陸上の乗り物 海上の乗り物 空中の乗り物 飛行機 ・・・ ヘリコプタ バイク 鉄道 自動車 船 ・・・ ヨット
類似度の計算 • 類似度はシソーラスにおいて、近くに位置する単語 同士ほど類似度は高いとする。 • 調べたい2つの単語のシソーラス中での根か らの深さをそれぞれ , とし、2つの共通の 上位語の根からの深さを
とした時、式は以 下のようになる。 sim( , ) = × + ※ 0 ≦ sim( , ) ≦ 1
類似度の計算例 • 「船」と「ヨット」は、それぞれ 根から5の深さがあるため、 = , =5 にする。 • お互いの共通する一番最初の
語は「海上の乗り物」であり、 根から4の深さがあるため、 = 4 にする。 • 先ほどの式に代入すると、 sim( , ) = × + = × + = 0.8 となる。 抽象的 もの 行動 ・・・・・ ・・・・・ ・・・・・ 人工物 ・・・・・ ・・・・・ 乗り物 陸上の乗り物 海上の乗り物 空中の乗り物 飛行機 ・・・ ヘリコプタ バイク 鉄道 自動車 船 ・・・ ヨット 左図のシソーラスにおいて「船」と「ヨット」の類似度を求める
コーパス •電子化された言語データの蓄積物を 「コーパス(corpus)」という。 •収集したままの状態で、何も情報を付 加していないコーパスを 「生コーパス(raw corpus)」という。 •何らかの情報を付加したコーパスを 「タグ付きコーパス(tagged corpus)」と
いう。
タグ付きコーパス •何らかの情報を付加したコーパス であり、 「品詞」 「構文構造」 「語義」 「テキスト構造」 の、4つの情報が付加されているも のが多い。
言語の統計 •文字の連続を考えてみる。 →nグラム •通常n=2,3とすることが多い。 •ある文章や、その国の言語の 傾向がわかる。 •例題2.1をやるとわかりやすい。
機械学習 •訓練データを用いて機械学習を させ、分類器を用いて生データを 分類させることができる。 •機械学習手法として、 「サポートベクトルマシン」 「ナイーブベイズ分類器」 「決定木学習」 などがある。
機械学習 機械学習のプロセス図 クラス ラベル データ 訓練データ データ テストデータ 機械学習 アルゴリズム
分類器 クラス ラベル