Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
B3勉強会(2015年1月9日)辞書とコーパスについて
Search
MIKAMI-YUKI
January 09, 2015
Education
0
110
B3勉強会(2015年1月9日)辞書とコーパスについて
MIKAMI-YUKI
January 09, 2015
Tweet
Share
More Decks by MIKAMI-YUKI
See All by MIKAMI-YUKI
2016年_年次大会_発表資料
mikamiy
0
130
文献紹介_10_意味的類似性と多義解消を用いた文書検索手法
mikamiy
0
330
文献紹介_9_コーパスに基づく動詞の多義解消
mikamiy
0
120
文献紹介_8_単語単位による日本語言語モデルの検討
mikamiy
0
91
文献紹介_7_自動獲得した未知語の読み・文脈情報による仮名漢字変換
mikamiy
0
98
文献紹介_6_複数の言語的特徴を用いた日本語述部の同義判定
mikamiy
0
100
文献紹介_5_マイクロブログにおける感情・コミュニケーション・動作タイプの推定に基づく顔文字の推薦
mikamiy
0
130
文献紹介_4_結合価パターンを用いた仮名漢字変換候補の選択
mikamiy
0
400
文献紹介_3_絵本のテキストを対象とした形態素解析
mikamiy
1
420
Other Decks in Education
See All in Education
探査機自作ゼミ2025スライド
sksat
3
740
ビジネスモデル理解
takenawa
0
14k
モンテカルロ法(3) 発展的アルゴリズム / Simulation 04
kaityo256
PRO
8
1.4k
20250611_なんでもCopilot1年続いたぞ~
ponponmikankan
0
150
(キラキラ)人事教育担当のつらみ~教育担当として知っておくポイント~
masakiokuda
0
130
教える側は、初学者に谷越えまで伴走すべき(ダニング・クルーガー効果からの考察)
hysmrk
3
120
データで見る赤ちゃんの成長
syuchimu
0
230
IUM-03-Short Series of Functions
kanaya
0
120
シリコンバレーでスタートアップを共同創業したファウンディングエンジニアとしての学び
tomoima525
1
1.1k
核燃料政策を問う─英国の決断と日本
hide2kano
0
170
(2025) L'origami, mieux que la règle et le compas
mansuy
0
130
登壇未経験者のための登壇戦略~LTは設計が9割!!!~
masakiokuda
3
650
Featured
See All Featured
Building Better People: How to give real-time feedback that sticks.
wjessup
367
19k
Site-Speed That Sticks
csswizardry
10
790
CSS Pre-Processors: Stylus, Less & Sass
bermonpainter
358
30k
Refactoring Trust on Your Teams (GOTO; Chicago 2020)
rmw
34
3.1k
GraphQLの誤解/rethinking-graphql
sonatard
71
11k
GraphQLとの向き合い方2022年版
quramy
49
14k
[RailsConf 2023] Rails as a piece of cake
palkan
56
5.8k
Connecting the Dots Between Site Speed, User Experience & Your Business [WebExpo 2025]
tammyeverts
8
480
How GitHub (no longer) Works
holman
315
140k
The Success of Rails: Ensuring Growth for the Next 100 Years
eileencodes
46
7.6k
Documentation Writing (for coders)
carmenintech
73
5k
Building a Scalable Design System with Sketch
lauravandoore
462
33k
Transcript
長岡技術科学大学 B3 三上侑城 B3勉強会 2015年1月9日 辞書とコーパスについて 自然言語処理研究室
辞書 人間が言語を読み書きする際、その言 語に関する様々な知識を利用する。 ↓ コンピュータが言語を処理するには、その 言語の知識が必要。 ↓ 言語に関する知識である「辞書」を使う。
単語辞書 単語辞書には形態情報と意味情報が 記述されている。 形態情報には「読み」「品詞」「活用 形」が含まれる。 意味情報には「単語の意味」「格フレー ム」が含まれる。
シソーラス 単語や概念を、木構造の階層に体 系的に分類した辞書。 単語間の類似度を計算する上で重 要な役割をはたす。
シソーラス 抽象的 もの 行動 ・・・・・ ・・・・・ ・・・・・ 人工物 ・・・・・ ・・・・・
乗り物 陸上の乗り物 海上の乗り物 空中の乗り物 飛行機 ・・ ヘリコプタ バイク 鉄道 自動車 船 ・・・ ヨット シソーラスのイメージ図
シソーラス 類似度の計算 調べたい2つの単語を と として、 シソーラス中での根からの深さをそれ ぞれ , 、2つの共通の上位語の 根からの深さを
とした時、式は以下 のようになる。 sim( , ) = × + ※ 0 ≦ sim( , ) ≦ 1
シソーラス 類似度の計算 「船」と「ヨット」は、それぞれ 根から5の深さがあるため、 = , =5 にする。
お互いの共通する一番最初の語 は「海上の乗り物」であり、 根から4の深さがあるため、 = 4 にする。 先ほどの式に代入すると、 sim(船,ヨット) = × + = × + = 0.8 抽象的 もの 行動 ・・・・・ ・・・・・ ・・・・・ 人工物 ・・・・・ ・・・・・ 乗り物 陸上の乗り物 海上の乗り物 空中の乗り物 飛行機 ・・ ヘリコプタ バイク 鉄道 自動車 船 ・・・ ヨット 左図のシソーラスにおいて「船」と「ヨット」の類似度を求める 1 2 3 4 5
コーパス 言語データの蓄積物を 「コーパス(corpus)」という。 収集したままの状態で、 何も情報を付加していないコーパスを 「生コーパス(raw corpus)」という。
何らかの情報を付加したコーパスを 「タグ付きコーパス(tagged corpus)」 という。
タグ付きコーパス タグ付きコーパスは、 「品詞」 「構文構造」 「語義」 「テキスト構造」 の、4つの情報が付加されているものが多 い。
言語処理ではこのタグ付きコーパスを使用 する。
言語の統計 文字がある条件下で現れる確率を計算 することで、その文章や、その国の言語の 傾向がわかる。 あるワード(−1 )の次にワード( )が来る 確率の計算は次で求まる。
P( |− ) = C(− , ) C(− ) ※ 0 ≦ P( |−1 ) ≦ 1
言語の統計 確率計算 以下の文章でP(N|Det)を求めてみる。 A/Det cat/N sat/V on/P the/Det mat/N.
A/Det girl/N read/V a/Det book/N. A/Det dog/N chased/V a/Det cat/N. P(N|Det) = C(Det,N) C(Det) = 6 6 = 1
機械学習 タグ付きコーパスを訓練データとして、 機械学習の手法である教師あり学習 を行なうことで、分類器を学習させる。 分類器はデータを入れると、データの 所属するクラスを出力する。
機械学習 教師あり学習のプロセス図 クラス ラベル データ 訓練データ データ テストデータ 機械学習 アルゴリズム
分類器 クラス ラベル
まとめ 辞書やコーパスなどの、あらかじめ整 理された文字データを使うことで、生 データを処理することができる。 類似度や確率の計算を行うことで、 そのデータの評価をおこなったり、傾向 を見ることができる。
ご静聴ありがとうございました 参考文献 自然言語処理の基礎 著:奥村学 コロナ社 2010年10月