Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
B3勉強会(2015年2月16日)サポートベクターマシン(SVM)
Search
MIKAMI-YUKI
February 16, 2015
Education
1
140
B3勉強会(2015年2月16日)サポートベクターマシン(SVM)
MIKAMI-YUKI
February 16, 2015
Tweet
Share
More Decks by MIKAMI-YUKI
See All by MIKAMI-YUKI
2016年_年次大会_発表資料
mikamiy
0
130
文献紹介_10_意味的類似性と多義解消を用いた文書検索手法
mikamiy
0
330
文献紹介_9_コーパスに基づく動詞の多義解消
mikamiy
0
120
文献紹介_8_単語単位による日本語言語モデルの検討
mikamiy
0
92
文献紹介_7_自動獲得した未知語の読み・文脈情報による仮名漢字変換
mikamiy
0
99
文献紹介_6_複数の言語的特徴を用いた日本語述部の同義判定
mikamiy
0
110
文献紹介_5_マイクロブログにおける感情・コミュニケーション・動作タイプの推定に基づく顔文字の推薦
mikamiy
0
140
文献紹介_4_結合価パターンを用いた仮名漢字変換候補の選択
mikamiy
0
410
文献紹介_3_絵本のテキストを対象とした形態素解析
mikamiy
1
420
Other Decks in Education
See All in Education
ROSConJP 2025 発表スライド
f0reacharr
0
240
American Airlines® USA Contact Numbers: The Ultimate 2025 Guide
lievliev
0
260
万博マニアックマップを支えるオープンデータとその裏側
barsaka2
0
890
~キャラ付け考えていますか?~ AI時代だからこそ技術者に求められるセルフブランディングのすゝめ
masakiokuda
7
500
Adobe Express
matleenalaakso
1
8k
日本の情報系社会人院生のリアル -JAIST 修士編-
yurikomium
1
130
シリコンバレーでスタートアップを共同創業したファウンディングエンジニアとしての学び
tomoima525
1
1.3k
Google Gemini (Gem) の育成方法
mickey_kubo
2
140
中央教育審議会 教育課程企画特別部会 情報・技術ワーキンググループに向けた提言 ー次期学習指導要領での情報活用能力の抜本的向上に向けてー
codeforeveryone
0
310
20250625_なんでもCopilot 一年の振り返り
ponponmikankan
0
380
登壇未経験者のための登壇戦略~LTは設計が9割!!!~
masakiokuda
3
710
みんなのコード 2024年度活動報告書/ 2025年度活動計画書
codeforeveryone
0
340
Featured
See All Featured
The Myth of the Modular Monolith - Day 2 Keynote - Rails World 2024
eileencodes
26
3.1k
The Art of Programming - Codeland 2020
erikaheidi
56
14k
Building an army of robots
kneath
306
46k
The World Runs on Bad Software
bkeepers
PRO
71
11k
The Pragmatic Product Professional
lauravandoore
36
6.9k
Large-scale JavaScript Application Architecture
addyosmani
514
110k
Building Better People: How to give real-time feedback that sticks.
wjessup
368
20k
No one is an island. Learnings from fostering a developers community.
thoeni
21
3.5k
The Illustrated Children's Guide to Kubernetes
chrisshort
48
51k
[RailsConf 2023] Rails as a piece of cake
palkan
57
5.9k
Speed Design
sergeychernyshev
32
1.2k
Automating Front-end Workflow
addyosmani
1371
200k
Transcript
長岡技術科学大学 B3 三上侑城 3年勉強会 2015年2月16日 サポートベクターマシン(SVM) 自然言語処理研究室 1
予備知識 x (xの太字): 入力ベクトル ω (ωの太字): 重みベクトル(求める物) 入力xと出力yの組の教師データ 例:(x 1
,y 1 ) , (x 2 ,y 2 ) y i =1の時は0より大きい値を指す。 y i =-1の時は0より小さい値を指す。 2
線形分離 空間を線形(まっすぐ)に分離する。 2次元の場合は平面を直線で分断。 3次元の場合は空間を平面で分断。 4次元以上は分断面が分離超平面と 呼ばれるものになる。 3
線形分離 2次元の時、分離した片方をy=1として、 もう片方をy=-1とする。 学習データを全て正しく識別できる場合、 そのデータのことを線形分離可能であると 言う。 線形分離不可能の時は、非線形分離 を行う。 4
線形分離 5 y = 1 y = -1 2次元空間
サポートベクターマシン(SVM) 線形識別器の1つ。 マージンの最大化と非線形分類を同時 に実現でき、高精度な分類を行うことが できる。 機械学習で分離平面を決める。 6
サポートベクターマシン 7 ←分離平面 テストデータがどちらに有るか判定
目的関数 目的関数という関数が与えられ、この関 数の値を最小化することが学習の目的と なる。 L1正規化SVM目的関数 max 1 − ・ ,
0 + || ※max(a,b):大きい方の値を返すもの 8
目的関数 max 1 − ・ , 0 + || 損失項
正則化項 9
目的関数 max 1 − ・ , 0 + || 損失項の働き
y i =1(0より大きな値)であるとき、 ω・x i の結果が10とすれば、 1-10=-9となり、0の方が大きくなるため、 損失項の値は0になる。 10
目的関数 max 1 − ・ , 0 + || 損失項の働き
y i =1(0より大きな値)であるとき、 ω・x i の結果が-10とすれば、 1-(-10)=11となり、11の方が大きくな るため、損失項の値は11になる。 11
目的関数 max 1 − ・ , 0 + || 損失項の働き
y i =-1(0より小さい値)であるとき、 ω・x i の結果が-10とすれば、 y i ω・x i は、 1-(10)=-9となり、0の方が大きくなるた め、損失項の値は0になる。 12
目的関数 損失項は ”多くの場合” 、正解した場合 は0で、間違えた場合は0以上の値を取 るようになっている。 つまり、損失項の値が小さいほど、判別 器として性能がいいことが言える。 13
目的関数 ”多くの場合”と言ったが、実は正解した 場合にも損失が0以上になる場合がある。 max 1 − ・ , 0 +
|| ω・x i の結果が1以下の時に0より大き くなる。 14
目的関数 そのため、正解だと判断されず、ωのパラ メータが変更され、結果が最低でも1 (もしくは-1)になる。 -1<y<1の間には何も入らなくなるので、 その間にマージンができる。 → 分離平面が安定する。 15
マージン最大化 16 ←分離平面 <1 <1
サポートベクター 17 ←分離平面 <1 <1 ・分離平面に最も近い事例のことを言う。 ・これだけで分離平面を表現できる。
正規化項 max 1 − ・ , 0 + || 複雑なモデル(過学習状態)になると、
未知データに対して弱くなることがよくある。 損失項が多少のマイナスでもOKにするこ とで、余裕をもたせることができる。 18
非線形分離 うまく分離出来ない時には非線形分離 を使用する。 19
非線形分離 より高度な空間で分離作業を行う。 →高次元空間への射影 新しい軸を作る。 Φ(1 , 2 ) = 1
2 1 2 20
非線形分離 21 2次元空間
非線形分離 22 3次元空間
非線形分離 23 3次元空間で線形分離の分離平面を決め、 2次元空間に戻すと、非線形分離になる
収束判定 計算をいつ終えるか?という問題。 完全にパラメータが変化しなくなるまでは 時間が非常にかかる。 実用的には ・十分だと思われる繰り返し(学習)回数 を最初に設定しておく。 ・目的関数の値がほとんど変わらなくなっ たら終了する。 24
ご視聴ありがとうございました 参考文献 ・日本語入力を支える技術 著:徳永拓之 技術評論社 2012年3月 ・機械学習に基づく自然言語処理I 京都大学情報学研究科 黒橋 禎夫
http://nlp.ist.i.kyoto-u.ac.jp/ member/kuro/lecture/LIP10/LIP09.pdf 25