, H )-second-order critical point, i.e. ∇f (x k ) < g and λmin(∇2f (x k )) > − H . Theorem Let N gH the number of evaluations of f needed to reach a ( g , H )-second-order critical point; then N gH ≤ O n2 max κ−3 −3 g , σ−3 n3 −3 H . Corollary Choosing D k = [I -I] yields κ = 1/ √ n, σ = 1, and the complexity bound is O n5 max −3 g , −3 H . Mesures de criticalité d'ordres 1 et 2 en recherche directe 21 / 25