Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
5W1H ~LLM活用プロジェクトを推進するうえで考えるべきこと~
Search
natsuume
June 28, 2024
Technology
0
600
5W1H ~LLM活用プロジェクトを推進するうえで考えるべきこと~
2024/06/28 【LT大会】生成AI・LLMを活用した業務効率化・課題解決について語る会
https://finatext.connpass.com/event/321562/
登壇資料
natsuume
June 28, 2024
Tweet
Share
More Decks by natsuume
See All by natsuume
線で考える画面構成
natsuume
1
790
LLM API活用における業務要件の検討
natsuume
0
180
自然言語処理基礎の基礎
natsuume
0
160
5分ですこしわかった気になる Deep Learning概要
natsuume
0
59
ChatGPT / OpenAI API実用入門
natsuume
0
190
Chat Completions APIにおける実行時間の検証
natsuume
0
350
Other Decks in Technology
See All in Technology
グループポリシー再確認
murachiakira
0
120
【Oracle Cloud ウェビナー】VMware環境を短期間でクラウド化!ベネッセ様事例に学ぶ仮想環境クラウド移行のリアル
oracle4engineer
PRO
2
120
製造業の会計システムをDDDで開発した話
caddi_eng
2
780
Dapr For Java Developers SouJava 25
salaboy
1
110
AIエージェント完全に理解した
segavvy
3
190
AI・LLM事業部のSREとタスクの自動運転
shinyorke
PRO
0
220
単一の深層学習モデルによる不確実性の定量化の紹介 ~その予測結果正しいですか?~
ftakahashi
PRO
3
500
みんなで育てるNewsPicksのSLO
troter
4
1k
【ServiceNow SNUG Meetup LT deck】ServiceNow「検索性の進化」ZingからNow Assistまで
niwato
1
280
バクラクでのSystem Risk Records導入による変化と改善の取り組み/Changes and Improvement Initiatives Resulting from the Implementation of System Risk Records
taddy_919
0
140
これからクラウドエンジニアになるために本当に必要なスキル 5選
hiyanger
1
440
頻繁リリース × 高品質 = 無理ゲー? いや、できます!/20250306 Shoki Hyo
shift_evolve
0
130
Featured
See All Featured
A Tale of Four Properties
chriscoyier
158
23k
Fashionably flexible responsive web design (full day workshop)
malarkey
406
66k
GraphQLの誤解/rethinking-graphql
sonatard
69
10k
Large-scale JavaScript Application Architecture
addyosmani
511
110k
GraphQLとの向き合い方2022年版
quramy
45
14k
Intergalactic Javascript Robots from Outer Space
tanoku
270
27k
Easily Structure & Communicate Ideas using Wireframe
afnizarnur
194
16k
A better future with KSS
kneath
238
17k
Docker and Python
trallard
44
3.3k
Fight the Zombie Pattern Library - RWD Summit 2016
marcelosomers
233
17k
Become a Pro
speakerdeck
PRO
26
5.2k
ピンチをチャンスに:未来をつくるプロダクトロードマップ #pmconf2020
aki_iinuma
117
51k
Transcript
5W1H ~LLM活用プロジェクトを推進するうえで考えるべきこと~ 2024/06/28 【LT大会】生成AI・LLMを活用した業務効率化・課題解決について語る会
プロフィール natsuume Twitter(X): @_natsuume - 株式会社オプト AIソリューション開発部 (2019~) - NLP・生成AI・LLMに関するPoC,
プロダクト開発 ChatGPT(OpenAI API)を活用した広告制作支援ツール 「CRAIS for Text」にてテックリード担当 https://optipschannel.opt.ne.jp/solutions/crais-for-text
※今回の発表では技術的な内容は あまり含まれません
突然ですが 生成AIの活用、順調ですか?
「生成AI以外のところで時間がかかる」 「PoCが思ったように進まない」 ・・・
もし心当たりがあるなら…… 技術検証の前 に 決めるべきことを決められていないかも
①When(いつ) その取り組みの期限は? - 1ヶ月後 / 半年後 / 1年後 / …
- 1年後を見据えた取り組みなら、現時点のLLMモデルに合わせてプロンプ トを頑張ってチューニングする必要はない 成果物はいつまで使う(耐用年数は)? - (前提として不確実性は非常に高い) - 類似機能がSaaSとして提供されたらどうする? - どの程度先までを見据えて作り込むか
②Where(どこで) 業務フローのどこで LLMを使う? - ユーザが直接使う / 何らかの中間処理として生成AI・LLMを使う どこで/どこの生成 AI・LLMを使う -
ChatGPT:OpenAI API / Azure Open AI - Claude:Amazon Bedrock / Anthoropic Cluade API - Gemini:Google AI Studio / Vertex AI 法務確認, セキュリティ, …etc
③Who(誰が) この取り組みで誰が恩恵を受ける / 誰が使う? - 相談者・発案者は必ずしも直接的な受益者ではない場合がある ユーザ側の業務スキルの差は? スキルの差で得られる恩恵に差がある? - ジュニア /
ミドル / エキスパートなど ユーザのリテラシーは? - 素のChatGPT/LLMをどれくらい使いこなせる? - プロンプトエンジニアリングに関する知識は? - ハルシネーションなどAIの特性に関する理解は?
④What(何を) そもそも何を解決したい? - LLM・生成AIが得意なこと / 苦手なこと - 要約, 翻訳, 情報抽出,
フォーマット変換, 分析, 提案, 壁打ち, 検索 ビジネスインパクト・ニーズは十分か? - ヒアリングは大事だが、鵜呑みにしてはいけない - 御用聞きにならない 何を達成したら成功? - どの程度の精度を求める? - やらないことを決める
⑤Why(なぜ) なぜ生成AI・LLMを使うのか - ルールベースの処理 or 人手ではだめ? - (会社としてのアピールのために「生成 AI・LLMを使っていること」が重要な場合もある) -
既存の機械学習手法ではだめ? - RAG・ChatBotにする必要はある? - 検索結果を一覧で表示する場合との差分は? (特に既存業務改善の場合は)既存の手法との比較方法を考える必要がある
⑥How(どのように) 生成AI・LLMをどう使う? - リアルタイム性, インタラクティブ性は必要? - Batch APIの利用など、基本的にリアルタイム性・インタラクティブ性が必要ないほど選択肢の幅は 広い (ユーザが使う機能の場合)
UIはどうする? - チャット形式 or フォームに必要事項を入力? → PoCの段階からアプリケーション全体での ユーザ体験まで含めて考えるのが良い
まとめ 生成AI・LLM活用プロジェクト/PoCをスムーズに進めるためには - 「いつまでに」「何を」やるのか - 「どこの」生成AI・LLMを使うのか, 業務フローの「どこで」使うのか - 「なぜ」生成AI・LLMを使うのか -
「誰が」「どのように」生成AI・LLM使うのか を最初に明確化することが大事