Upgrade to Pro — share decks privately, control downloads, hide ads and more …

ナビタイムジャパンに集まる移動ビッグデータの分析基盤

 ナビタイムジャパンに集まる移動ビッグデータの分析基盤

2020/07/27開催されたTech-on MeetUp Online#02「もしエンタープライズのエンジニアがデータ分析をやることになったら」にて発表した資料です。

NAVITIME JAPAN

July 27, 2020
Tweet

More Decks by NAVITIME JAPAN

Other Decks in Technology

Transcript

  1. ©NAVITIME JAPAN 自己紹介 新立 和広(しんたて かずひろ) 株式会社ナビタイムジャパン • 2009年入社 •

    2014年~2017年までログデータ分析業務に従事 • 現在はデータ分析基盤の設計・構築に従事
  2. ©NAVITIME JAPAN 発表内容 • 会社紹介 • ログデータの活用事例 • データ分析基盤の構成 •

    ログデータの収集 • 分析用データへの加工 • 分析系サービスの活用
  3. ©NAVITIME JAPAN 会社概要 事業内容 ナビゲーションサイト・アプリの運営・開発 経路探索エンジンのライセンス事業 法人向け経路付地図配信ASP事業 ビジネスナビタイム事業 法人向けソリューション事業 メディア事業

    テレマティクス事業 交通コンサルティング事業 海外事業 インバウンド事業 トラベル事業 MaaS事業 会社名 株式会社ナビタイムジャパン 設立 2000年3月 社員数 約500名(2019年3月現在) 5 ナビタイムジャパンの南青山オフィス
  4. ©NAVITIME JAPAN サービスから集まるログデータ コンシューマサービス NAVITIME 乗換NAVITIME バスNAVITIME カーナビタイム トラックカーナビ 自転車NAVITIME

    ツーリングサポーター ➢ 施策の検討 ➢ サービスへの活用 ➢ データ活用ビジネス 移動実績 検索履歴 口コミ情報 匿名化 抽出 分析
  5. ©NAVITIME JAPAN データ分析基盤の全体像 データセン ター データ分析環境 データレイク 分析用データ EMR EMR

    オフィス GCP AWS Athena Web サイト Glue Glue Data Catalog アプリケーション 収集 加工 分析
  6. ©NAVITIME JAPAN ログデータの収集 データセン ター データ分析環境 データレイク 分析用データ EMR EMR

    オフィス GCP AWS Athena Web サイト Glue Glue Data Catalog アプリケーション 収集
  7. ©NAVITIME JAPAN 分析目的で収集・保管しているデータ • サーバーのログ • アクセスログ • 一部のレスポンスデータ(経路情報) など

    • ユーザーの行動・操作ログ • 位置情報 • アプリケーション上でのユーザ操作 など • データベースからの定期抽出 • ユーザデータ • マスターデータ • 地図データ • 施設・住所データ など
  8. ©NAVITIME JAPAN サーバーログの収集 fluentd – Kinesis Data Streamsによる収集 • 耐障害性やスループット向上

    • 用途別の後続処理 AWS GCP データセンター データ分析環境 Kinesis Data Streams Lambda Kinesis Client データレイク リアルタイム分析 一定間隔で保存 ・生のテキストデータ ・適切なサイズ(数MB~100MB)に集約 ・gzip圧縮
  9. ©NAVITIME JAPAN 行動・操作ログの収集 Amazon Cognitoで認証し、 Web/モバイルアプリからKinesisに直接送信 Cognito Kinesis Data Streams

    Kinesis Data Firehose データレイク 一定間隔で保存 認証 送信 効果測定や流入・流出の分析にはFirebase Analyticsを利用する事も多い • 解析ソリューションであり、構築コストが低い • 別のデータとの紐づけができず、深掘りした分析が困難なのが課題 ・生のテキストデータ ・適切なサイズ(数MB~100MB)に集約 ・gzip圧縮
  10. ©NAVITIME JAPAN 分析用データへの加工 データセン ター データ分析環境 データレイク 分析用データ EMR EMR

    オフィス GCP AWS Athena Web サイト Glue Glue Data Catalog アプリケーション 加工
  11. ©NAVITIME JAPAN 加工する目的 • パフォーマンス最適化 • 10MB~100MBにファイル集約 • Parquet/ORCなどの列指向フォーマットへの変換 •

    データを適切な階層構造に分割(パーティショニング) など • データの整形 • 生データを構造化データへと整形して扱いやすく • ユーザーに紐づく情報の匿名化・除去 など
  12. ©NAVITIME JAPAN 加工に用いるAWSサービス • EMR(Elastic MapReduce) • マネージド型のHadoopクラスタ • MapRecudeやSparkのプログラムによる分散処理

    • Glue • AWSが提供するETLサービス • データのクロールによるスキーマ(カタログ)の自動認識 • SparkSQLベースの単純なETLコードの自動生成 ナビタイムでは、EMRを利用するケースが多い • バイナリデータのパース • Protocol BuffersやMessage Packなど • データの順序を考慮した変換処理 • 位置情報の異常値除去やマップマッチングなど
  13. ©NAVITIME JAPAN 分析系サービスの活用 データセン ター データ分析環境 データレイク 分析用データ EMR EMR

    オフィス GCP AWS Athena Web サイト Glue Glue Data Catalog アプリケーション 分析
  14. ©NAVITIME JAPAN 利用している分析系サービス • SQLだけでは不可能な分析 • EMR • SQLによる分析 •

    Athena • BI/ダッシュボードツール • Tableau • re:dash • データプラットフォーム • Arm Treasure Data
  15. ©NAVITIME JAPAN Athenaによる準リアルタイム集計 AWS GCP データセンター データ分析環境 Kinesis Data Streams

    Kinesis Client S3 1分間隔で 保存 Athena Athena 5分間隔で集計 15分間隔で集計 混雑エリアマップ 駅混雑予報 たまに失敗する事を前提に、本番サービスでも活用中 • 考慮すべき事項 • リトライ処理 • 失敗時は直近の結果を利用
  16. ©NAVITIME JAPAN BI/ダッシュボードツール • 導入の背景 • 分析結果を広く共有 • 巨大なエクセル・スプレッドシートからの脱却 •

    発散しているデータ・情報の集約 • re:dash • ダッシュボードツール • KPIダッシュボードなど共有用途 • re:dashでは限界の場合にTableauを利用 • Tableau(Server) • BIツール • 高度な分析用途
  17. ©NAVITIME JAPAN BI/ダッシュボードツール • re:dashはAthenaと直接接続 • クエリは利用者が記述する為、適切なクエリを発行可能 • Tableauは一次集計結果を格納したDBと接続 •

    Tableauが非効率的なクエリを発行する為、Athenaとの直接接続を禁止 • 内部DBへのデータの抽出を徹底できるなら接続できるが・・・ 分析用データ Athena RDS SQL JDBC接続 一次集計結果
  18. ©NAVITIME JAPAN Arm Treasure Data • Treasure Dataの特徴 • フルマネージドのデータ分析基盤

    • 安定性が高いHiveと高速なPrestoを選択可能 • 入出力の連携先が豊富 • GUIでワークフローを作成可能 ⇒AWSのサービスを組み合わせるよりも、構築・運用の敷居が低い • WEBサイトのデータ分析基盤として活用 • Webページからのイベントログの収集 • 他社データとの連携 • データ分析 • 大量の定期集計業務 など
  19. ©NAVITIME JAPAN 現在の課題 • クラウドは歯止めが利かない • 高速化やチューニングを怠ってマシンリソースで解決しがち • 油断するとどんどん増えていくS3サイズ •

    終わりなきAthenaの悪質クエリ指導 • パーティションを指定せずに全スキャン • 長期集計の乱発 • データの発散 • Firebase AnalyticsやTreasure Dataなど • これらのソリューションを使う事自体は問題ないので、 有用なデータは最終的にS3に蓄積できるようにしたい
  20. ©NAVITIME JAPAN 今後の取り組み • Amazon QuickSightの導入 • 分析がWeb上・マネージドサービス上で完結する • 安価な料金体系

    • 機械学習系サービスの活用 • Sage Maker • Amazon Personalize • Amazon Forecast • AWS以外のクラウドベンダーの活用 • 現在はAWS中心になっている • GCP/Azureなど他の選択肢も増やしていきたい